login
A132334
G.f.: A(x) = A_1 where A_1 = 1/[1 - x*(A_2)^3], A_2 = 1/[1 - x^2*(A_3)^3], A_3 = 1/[1 - x^3*(A_4)^3], ... A_n = 1/[1 - x^n*(A_{n+1})^3] for n>=1.
2
1, 1, 1, 4, 7, 16, 43, 89, 216, 502, 1154, 2715, 6268, 14583, 33936, 78787, 183141, 425547, 988765, 2297533, 5338321, 12403697, 28819646, 66962219, 155583912, 361492693, 839915741, 1951499287, 4534218339, 10535031491, 24477592379
OFFSET
0,4
COMMENTS
Self-convolution cube is A132335.
PROG
(PARI) {a(n)=local(A=1+x*O(x^n)); for(j=0, n-1, A=1/(1-x^(n-j)*A^3 +x*O(x^n))); polcoeff(A, n)}
CROSSREFS
Cf. A132335; A132332 (variant).
Sequence in context: A217289 A050357 A296059 * A289521 A097661 A182561
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 20 2007
STATUS
approved