login
A132333
G.f.: A(x) = (A_1)^2 where A_1 = 1/[1 - x*(A_2)^2], A_2 = 1/[1 - x^2*(A_3)^2], A_3 = 1/[1 - x^3*(A_4)^2], ... A_n = 1/[1 - x^n*(A_{n+1})^2] for n>=1.
2
1, 2, 3, 8, 17, 36, 85, 184, 405, 898, 1962, 4296, 9371, 20376, 44244, 95844, 207217, 447264, 963835, 2073900, 4456374, 9563620, 20499344, 43891176, 93877423, 200594560, 428231448, 913400192, 1946652868, 4145533218, 8821743618
OFFSET
0,2
COMMENTS
Self-convolution of A132332.
PROG
(PARI) {a(n)=local(A=1+x*O(x^n)); for(j=0, n-1, A=1/(1-x^(n-j)*A^2 +x*O(x^n))); polcoeff(A^2, n)}
CROSSREFS
Cf. A132332; A132335 (variant).
Sequence in context: A064954 A267223 A292401 * A182889 A256169 A298405
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 20 2007
STATUS
approved