login
A132330
G.f.: A(x) = 1 + x*(A_2)^3; A_2 = 1 + x^2*(A_3)^3; A_3 = 1 + x^3*(A_4)^3; ... A_n = 1 + x^n*(A_{n+1})^3 for n>=1 with A_1 = A(x).
2
1, 1, 0, 3, 0, 3, 9, 1, 18, 9, 36, 45, 57, 90, 114, 351, 165, 558, 738, 1044, 1791, 1908, 3915, 4926, 8568, 8553, 17217, 26271, 30474, 50967, 68526, 113319, 144324, 219195, 299359, 473454, 665424, 860733, 1396350, 1895913, 2762550, 3790935, 5695974
OFFSET
0,4
FORMULA
G.f. A(x) = B(x,x), where B(w,x) satisfies the functional equation B(w,x) = 1 + x*B(w,wx)^3. B(w,x) is the g.f. for the number of ternary trees of given path length and number of nodes; B(1,x) is the g.f. for A001764.
PROG
(PARI) {a(n)=local(A=1+x*O(x^n)); for(j=0, n-1, A=1+x^(n-j)*A^3); polcoeff(A, n)}
CROSSREFS
Cf. A132331 (cube); A001764; A108643 (variant).
Sequence in context: A099093 A137339 A230184 * A117078 A021333 A348670
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 20 2007
STATUS
approved