|
|
A132297
|
|
Number of distinct Markov type classes of order 2 possible in binary strings of length n.
|
|
4
|
|
|
4, 7, 12, 18, 26, 35, 46, 58, 72, 87, 104, 122, 142, 163, 186, 210, 236, 263, 292
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,1
|
|
COMMENTS
|
a(n) = A267529(n) for 2 <= n <= 20. - Georg Fischer, Oct 30 2018
|
|
LINKS
|
Table of n, a(n) for n=2..20.
L. R. Varshney and V. K. Goyal, Benefiting from Disorder: Source Coding for Unordered Data, arXiv:0708.2310 [cs.IT], 2007.
|
|
FORMULA
|
From Colin Barker, Sep 07 2013: (Start)
Conjectures:
a(n) = (15+(-1)^n-4*n+6*n^2)/8.
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4).
G.f.: -x^2*(2*x^3-2*x^2-x+4) / ((x-1)^3*(x+1)). (End)
|
|
CROSSREFS
|
Cf. A132298, A132299, A132300.
Sequence in context: A310792 A178907 A265431 * A007333 A097536 A293829
Adjacent sequences: A132294 A132295 A132296 * A132298 A132299 A132300
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
Lav R. Varshney (lrv(AT)mit.edu), Aug 17 2007
|
|
STATUS
|
approved
|
|
|
|