

A132297


Number of distinct Markov type classes of order 2 possible in binary strings of length n.


4



4, 7, 12, 18, 26, 35, 46, 58, 72, 87, 104, 122, 142, 163, 186, 210, 236, 263, 292
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,1


COMMENTS

a(n) = A267529(n) for 2 <= n <= 20.  Georg Fischer, Oct 30 2018


LINKS

Table of n, a(n) for n=2..20.
L. R. Varshney and V. K. Goyal, Benefiting from Disorder: Source Coding for Unordered Data, arXiv:0708.2310 [cs.IT], 2007.


FORMULA

From Colin Barker, Sep 07 2013: (Start)
Conjectures:
a(n) = (15+(1)^n4*n+6*n^2)/8.
a(n) = 2*a(n1)2*a(n3)+a(n4).
G.f.: x^2*(2*x^32*x^2x+4) / ((x1)^3*(x+1)). (End)


CROSSREFS

Cf. A132298, A132299, A132300.
Sequence in context: A310792 A178907 A265431 * A007333 A097536 A293829
Adjacent sequences: A132294 A132295 A132296 * A132298 A132299 A132300


KEYWORD

nonn,more


AUTHOR

Lav R. Varshney (lrv(AT)mit.edu), Aug 17 2007


STATUS

approved



