login
A132260
Array T(k,n) = n-th prime p such that 2^2^k + p^2^k is prime, k>2, read by antidiagonals.
1
13, 89, 137, 29, 107, 223, 37, 59, 127, 331, 113, 53, 101, 139, 389, 113, 223, 181, 103, 173, 491, 13, 1223, 5279, 491, 109, 179, 563, 1151, 181, 1277, 7517, 547, 181, 229, 647, 43, 2153, 761, 1993, 8039, 619, 199, 233, 701, 53, 271, 3559, 4133, 2399, 9833, 661, 379, 349, 773
OFFSET
3,1
COMMENTS
These were computed by Ignacio Larrosa CaƱestro, who cautions that some are only probable primes. The k=3 row is A157950. The main diagonal is A132261.
EXAMPLE
The array begins:
.n..|...1....2....3....4....5....6.....7.....8.....9....10...
k=3.|..13..137..223..331..389..491...563...647...701...773...
k=4.|..89..107..127..139..173..179...229...233...349...421...
k=5.|..29...59..101..103..109..181...199...379...769...881...
k=6.|..37...53..181..491..547..619...661...677...911...941...
k=7.|.113..223.5279.7517.8039.9833.12197.13757.21467.23447...
k=8.|.113.1223.1277.1993.2399.9349..9739.10211.10973.11059...
KEYWORD
nonn,tabl
AUTHOR
Jonathan Vos Post, Aug 15 2007
EXTENSIONS
More terms from Jinyuan Wang, Feb 01 2022
STATUS
approved