login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A132209 a(0) = 0 and a(n) = 2*n^2 + 2*n - 1, for n>=1. 9
0, 3, 11, 23, 39, 59, 83, 111, 143, 179, 219, 263, 311, 363, 419, 479, 543, 611, 683, 759, 839, 923, 1011, 1103, 1199, 1299, 1403, 1511, 1623, 1739, 1859, 1983, 2111, 2243, 2379, 2519, 2663, 2811, 2963, 3119, 3279, 3443, 3611, 3783, 3959, 4139, 4323, 4511 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Essentially identical to A142463.

Previous name was: Sequence gives X values that satisfy the integer equation 2*X^3 + 3*X^2 = Y^2.

To find Y values: b(n) = (2*n^2 + 2*n - 1)*(2*n - 1).

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..5000

FORMULA

a(n) = 2*n^2 + 2*n - 1 for n>=1.

G.f.: x*(1+x)*(3-x)/(1-x)^3. - R. J. Mathar, Nov 14 2007

E.g.f.: 1 + (2*x^2 + 4*x -1)*exp(x). - G. C. Greubel, Jul 13 2017

MATHEMATICA

f[n_]:=Inner[Times, {n, n+1}, {n+2, n+3}, Plus]; Table[f[n], {n, 0, 5!}] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2010 *)

Join[{0}, LinearRecurrence[{3, -3, 1}, {3, 11, 23}, 40]] (* Vincenzo Librandi, Sep 22 2015 *)

PROG

(MAGMA) [0] cat [2*n^2+2*n-1: n in [1..50]]; // Vincenzo Librandi, Sep 22 2015

(PARI) for(n=0, 50, print1(if(n==0, 0, 2*n^2 + 2*n -1), ", ")) \\ G. C. Greubel, Jul 13 2017

CROSSREFS

Cf. A005563, A046092, A001082, A002378, A036666, A062717, A028347, A087475, A000217.

Cf. A153238. - Vincenzo Librandi, Jan 03 2009

Sequence in context: A072671 A119173 A106201 * A142463 A289575 A086497

Adjacent sequences:  A132206 A132207 A132208 * A132210 A132211 A132212

KEYWORD

nonn

AUTHOR

Mohamed Bouhamida (bhmd95(AT)yahoo.fr), Nov 06 2007

EXTENSIONS

Edited by the Associate Editors of the OEIS, Nov 15 2009

More terms from Vincenzo Librandi, Sep 22 2015

Shorter name (using formula given) from Joerg Arndt, Sep 27 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 18 12:13 EST 2017. Contains 294887 sequences.