login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A132188 Number of 3-term geometric progressions with no term exceeding n. 14
1, 2, 3, 6, 7, 8, 9, 12, 17, 18, 19, 22, 23, 24, 25, 32, 33, 38, 39, 42, 43, 44, 45, 48, 57, 58, 63, 66, 67, 68, 69, 76, 77, 78, 79, 90, 91, 92, 93, 96, 97, 98, 99, 102, 107, 108, 109, 116, 129, 138, 139, 142, 143, 148, 149, 152, 153, 154, 155, 158 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
a(n) = number of pairs (i,j) in [1..n] X [1..n] with integral geometric mean sqrt(i*j). Cf. A000982, A362931. - N. J. A. Sloane, Aug 28 2023
Also the number of 2 X 2 symmetric singular matrices with entries from {1, ..., n} - cf. A064368.
Rephrased: Number of ordered triples (w,x,y) with all terms in {1,...,n} and w^2=x*y. See A211422. - Clark Kimberling, Apr 14 2012
LINKS
Gerry Myerson, Trifectas in Geometric Progression, Australian Mathematical Society Gazette 35 (3) (2008) pp. 189--194 (pages 47--52 in PDF).
FORMULA
a(n) = Sum [sqrt(n/k)]^2, where the sum is over all squarefree k not exceeding n.
If we call A120486, this sequence and A132189 F(n), P(n) and S(n), respectively, then P(n) = 2 F(n) - n = S(n) + n. The Finch-Sebah paper cited at A000188 proves that F(n) is asymptotic to (3 / pi^2) n log n. In the reference, we prove that F(n) = (3 / pi^2) n log n + O(n), from which it follows that P(n) = (6 / pi^2) n log n + O(n) and similarly for S(n).
a(n) = Sum_{1 <=x,y <=n} A010052(x*y). - Clark Kimberling, Apr 14 2012
a(n) = n+2*Sum_{1<=x<y<=n} A010052(x*y). - Chai Wah Wu, Aug 28 2023
EXAMPLE
a(4) counts these six (w,x,y) - triples: (1,1,1), (2,1,4), (2,4,1), (2,2,2), (3,3,3), (4,4,4). - Clark Kimberling, Apr 14 2012
MAPLE
a:= proc(n) option remember; `if`(n=0, 0, a(n-1)+
1+2*add(`if`(issqr(i*n), 1, 0), i=1..n-1))
end:
seq(a(n), n=1..60); # Alois P. Heinz, Aug 28 2023
MATHEMATICA
t[n_] := t[n] = Flatten[Table[w^2 - x*y, {w, 1, n}, {x, 1, n}, {y, 1, n}]]
c[n_] := Count[t[n], 0]
t = Table[c[n], {n, 0, 80}] (* Clark Kimberling, Apr 14 2012 *)
PROG
(Haskell)
a132188 0 = 0
a132188 n = a132345 n + (a120486 $ fromInteger n)
-- Reinhard Zumkeller, Apr 21 2012
(Python)
from sympy.ntheory.primetest import is_square
def A132188(n): return n+(sum(1 for x in range(1, n+1) for y in range(1, x) if is_square(x*y))<<1) # Chai Wah Wu, Aug 28 2023
CROSSREFS
Cf. also A000982, A362931.
Sequence in context: A275884 A003605 A344128 * A326027 A255527 A316156
KEYWORD
nonn
AUTHOR
Gerry Myerson, Nov 21 2007
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 11:39 EDT 2024. Contains 371969 sequences. (Running on oeis4.)