This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A132148 Triangular array T(n,k) = C(n,k)*Lucas(n-k), 0 <= k <= n. 3
 2, 1, 2, 3, 2, 2, 4, 9, 3, 2, 7, 16, 18, 4, 2, 11, 35, 40, 30, 5, 2, 18, 66, 105, 80, 45, 6, 2, 29, 126, 231, 245, 140, 63, 7, 2, 47, 232, 504, 616, 490, 224, 84, 8, 2, 76, 423, 1044, 1512, 1386, 882, 336, 108, 9, 2, 123, 760, 2115, 3480, 3780, 2772, 1470, 480, 135, 10, 2 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS FORMULA G.f.: (2 - (2x + 1)*t)/(1 - (2x + 1)*t + (x^2 + x - 1)*t^2) = 2 + (1 + 2*x)*t + (3 + 2*x + 2*x^2)*t^2 + (4 + 9*x + 3*x^2 + 2*x^3)*t^3 + ... . The row polynomials L(n,x) = Sum_{k = 0..n} C(n,k)*Lucas(n-k)*x^k satisfy L(n,x)*F(n,x) = F(2*n,x), where F(n,x) = Sum_{k = 0..n} C(n,k)*Fibonacci(n-k)*x^k. Other identities and formulas include: L(n+1,x)^2 - L(n,x)*L(n+2,x) = -5*(x^2 + x - 1)^n; L(n+1,x) - (x^2 + x - 1)*L(n-1,x) = 5*F(n,x) for n >= 1; L(2*n,x) - 2*(x^2 + x - 1)^n = 5*F(n,x)^2; L(n,2*x) = Sum_{ k = 0..n} C(n,k)*L(n-k,x)*x^k; L(n,3*x) = Sum_{ k = 0..n} C(n,k)*L(n-k,2x)*x^k etc. Sum_{k = 0..n} C(n,k)*L(k,x)*F(n-k,x) = 2^n*F(n,x). Row sums: L(n,1) = Lucas(2*n); Alternating row sums: L(n,-1) = (-1)^n*Lucas(n); L(n,1/phi) = (-1)^n*L(n,-phi) = sqrt(5)^n for n >= 1, where phi = (1 + sqrt(5))/2. The polynomials L(n,-x) satisfy a Riemann hypothesis: the zeros of L(n,-x) lie on the vertical line Re x = 1/2 in the complex plane. From Peter Bala, Jun 29 2016: L(n,x) = (x + phi)^n + (x - 1/phi)^n, where phi = (1 + sqrt(5))/2. The zeros of L(n,x) are given by -1/2 - i*sqrt(5)/2*cot( (2*k - 1)*Pi/(2*n) ) for k = 1..n. d/dx(L(n,x)) = n*L(n-1,x). L(-n,x) = L(n,x)/(x^2 + x - 1)^n. L(n,x - 1) = (-1)^n*L(n,-x). L(n,x)^2 - L(2*n,x) = 2*(x^2 + x - 1)^n. L(n,x)^3 - L(3*n,x) = 3*(x^2 + x - 1)^n*L(n,x). L(n,x)^4 - L(4*n,x) = 4*(x^2 + x - 1)^n*L(n,x)^2 - 2*(x^2 + x - 1)^(2*n). If n divides m and m/n is odd then L(n,x) divides L(m,x) in the polynomial ring Z[x]. L(n,x) = F(n+1,x) - (x^2 + x - 1)*F(n-1,x) = 2*F(n+1,x) - (2*x + 1)F(n,x), where F(n,x) = Sum_{k = 0..n} binomial(n,k)*Fibonacci(n-k)*x^k denotes the row polynomials of A094440 (taken with an offset of 0). exp( Sum_{n >= 1} L(n,x)*z^n/n ) = Sum_{n >= 0} F(n+1,x)*z^n. exp( Sum_{n >= 1} L(n,x)*L(2*n,x)*z^n/n ) = 1/( F(1,x)*F(2*x)*F(3,x) ) * Sum_{n >= 0} F(n+1,x)*F(n+2,x)* F(n+3,x)*z^n. (End) EXAMPLE Triangle starts 2; 1, 2; 3, 2, 2; 4, 9, 3, 2; MAPLE with(combinat): lucas := n -> fibonacci(n-1) + fibonacci(n+1): T := (n, k) -> binomial(n, k)*lucas(n-k): for n from 0 to 10 do seq( T(n, k), k = 0..n) od; MATHEMATICA Flatten[Table[Binomial[n, k]LucasL[n-k], {n, 0, 10}, {k, 0, n}]] (* Harvey P. Dale, Nov 06 2011 *) CROSSREFS Cf. A000032 (T(n,0)), A000045, A005248 (row sums), A061084 (alter. row sums), A094440. Sequence in context: A304707 A112218 A172366 * A237829 A159974 A143866 Adjacent sequences:  A132145 A132146 A132147 * A132149 A132150 A132151 KEYWORD easy,nonn,tabl AUTHOR Peter Bala, Aug 17 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 22:28 EDT 2019. Contains 328373 sequences. (Running on oeis4.)