login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A132136 Expansion of -lambda(t + 1) in powers of the nome q = exp(Pi i t). 3
16, 128, 704, 3072, 11488, 38400, 117632, 335872, 904784, 2320128, 5702208, 13504512, 30952544, 68901888, 149403264, 316342272, 655445792, 1331327616, 2655115712, 5206288384, 10049485312, 19115905536, 35867019904, 66437873664 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

LINKS

Seiichi Manyama, Table of n, a(n) for n = 1..10000

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

Eric Weisstein's World of Mathematics, Elliptic Lambda Function

FORMULA

Expansion of lambda(t) / ( 1 - lambda(t)) in powers of the nome q = exp(Pi i t).

Expansion of 16 * q * (psi(q^2) / phi(-q))^4 = 16 * q * (psi(q^2) / psi(-q))^8 = 16 * q * (psi(q) / phi(-q^2))^8 = 16 * q * (psi(-q) / phi(-q))^8 = 16 * q * (f(-q^4) / f(-q))^8 = 16 * q / (chi(-q) * chi(-q^2))^8 in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions.

Expansion of 16 * (eta(q^4) / eta(q))^8 in powers of q.

Given G.f. A(x), then B(x) = A(x) / 16 satisfies 0 = f(B(x), B(x^2)) where f(u, v) = u^2 - v - 16*u*v - 16*v^2 - 256*u*v^2.

G.f.: 16 * x * (Product_{k>0} (1 + x^(2*k)) / (1 - x^(2*k - 1)))^8.

a(n) = 16 * A092877(n) = -(-1)^n * A115977(n). a(n) = A014972(n) unless n=0.

EXAMPLE

G.f. = 16*q + 128*q^2 + 704*q^3 + 3072*q^4 + 11488*q^5 + 38400*q^6 + 117632*q^7 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ With[ {m = InverseEllipticNomeQ@q}, m / (1 - m)], {q, 0, n}]; (* Michael Somos, Jun 03 2015 *)

a[ n_] := SeriesCoefficient[ 16 q (QPochhammer[ q^4] / QPochhammer[ q])^8, {q, 0, n}]; (* Michael Somos, Jun 03 2015 *)

PROG

(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); 16 * polcoeff( (eta(x^4 + A) / eta(x + A))^8, n))};

(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^3 / (eta(x + A)^2 * eta(x^4 + A)))^8 - 1, n))};

CROSSREFS

Cf. A014972, A092877, A115977.

Sequence in context: A014972 A115977 A128692 * A163399 A067488 A308310

Adjacent sequences:  A132133 A132134 A132135 * A132137 A132138 A132139

KEYWORD

nonn

AUTHOR

Michael Somos, Aug 11 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 15 17:03 EST 2019. Contains 330000 sequences. (Running on oeis4.)