%I #24 Feb 24 2023 03:11:22
%S 3,6,2,3,0,6,2,2,2,3,6,6,4,9,8,0,4,8,7,9,8,6,2,6,3,7,2,2,2,4,0,9,3,4,
%T 6,1,8,1,1,1,7,9,8,5,8,5,3,4,4,2,0,9,9,9,7,5,9,9,5,1,0,1,7,0,2,7,8,4,
%U 1,8,8,6,3,0,6,8,9,6,5,0
%N Decimal expansion of the constant obtained through Pierce retro-expansion of the prime sequence.
%C The asymptotic density of numbers which have an odd number of the trailing zeros in their primorial base representation (A342050). - _Amiram Eldar_, Feb 28 2021
%H Paolo P. Lava, <a href="/A132120/b132120.txt">Table of n, a(n) for n = 0..1000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PierceExpansion.html">Pierce Expansion</a>.
%F Equals Sum_{i>=1} (-1)^(i+1)/A002110(i).
%e 0.3623062223664980487986263722240934618111798585344209997599510170278418863068...
%p Digits := 80 : a := 0 : for i from 1 to 100 do a := a+(-1.0)^(i-1)/mul(ithprime(j),j=1..i) ; print(a) ; od:
%o (PARI) P=1; -sumalt(n=1,(-1)^n/P*=prime(n)) \\ _Charles R Greathouse IV_, Oct 03 2016
%Y Cf. A064648, A342050.
%K cons,nonn
%O 0,1
%A _R. J. Mathar_, Oct 31 2007
%E Corrected last entry by _Paolo P. Lava_, May 28 2013