login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A132070 G.f. satisfies: A(x) = 1 + x*A(x) * A(x*A(x)) + x^2*A(x)^2 * A'(x*A(x)). 1
1, 1, 3, 16, 121, 1166, 13508, 181616, 2769085, 47109136, 883639920, 18107148225, 402374973506, 9637795235498, 247545497301618, 6787859682565805, 197933312666622029, 6116627434424525916, 199695744998600583128, 6868763166262716491823, 248281343442023732418598 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..20.

FORMULA

a(n) = A113882(n+1) / (n+1) for n>=0.

G.f. A(x) satisfies:

(1) A(x) = (1/x)*Series_Reversion(x/(1 + x*A(x) + x^2*A'(x))).

(2) A(x) = (1/x)*Series_Reversion(x/G(x)) = G(x*A(x)) where G(x) = 1 + x*A(x) + x^2*A'(x) = A(x/G(x)) is the g.f. of A113882 (number of well-nested drawings of a rooted tree).

EXAMPLE

G.f.: A(x) = 1 + x + 3*x^2 + 16*x^3 + 121*x^4 + 1166*x^5 + 13508*x^6 +...

Related expansions:

A(x*A(x)) = 1 + x + 4*x^2 + 25*x^3 + 206*x^4 + 2077*x^5 + 24603*x^6 +...

A'(x*A(x)) = 1 + 6*x + 54*x^2 + 598*x^3 + 7714*x^4 + 112726*x^5 +...

A(x)*A(A(x)) = 1 + 2*x + 8*x^2 + 48*x^3 + 380*x^4 + 3709*x^5 + 42856*x^6 +...

A(x)^2*A'(A(x)) = 1 + 8*x + 73*x^2 + 786*x^3 + 9799*x^4 + 138760*x^5 +...

where A(x) = 1 + x*A(x)*A(x*A(x)) + x^2*A(x)^2*A'(x*A(x)).

Let G(x) = 1 + x*A(x) + x^2*A'(x) be the g.f. of A113882;

the table of coefficients in G(x)^n begins:

G(x)^1: [(1), 1, 2, 9, 64, 605, 6996, 94556, ...];

G(x)^2: [1, (2), 5, 22, 150, 1374, 15539, 206676, ...];

G(x)^3: [1, 3, (9), 40, 264, 2346, 25937, 339294, ...];

G(x)^4: [1, 4, 14, (64), 413, 3568, 38558, 495848, ...];

G(x)^5: [1, 5, 20, 95, (605), 5096, 53840, 680365, ...];

G(x)^6: [1, 6, 27, 134, 849, (6996), 72302, 897558, ...];

G(x)^7: [1, 7, 35, 182, 1155, 9345, (94556), 1152936, ...]; ...

where the terms in parenthesis form the initial terms of this sequence:

[(1)/1, (2)/2, (9)/3, (64)/4, (605)/5, (6996)/6, (94556)/7, ...].

Further, the logarithm of the g.f. A(x) may be formed from a diagonal in the above table:

log(A(x)) = x + 5*x^2/2 + 40*x^3/3 + 413*x^4/4 + 5096*x^5/5 + 72302*x^6/6 + 1152936*x^7/7 +...

PROG

(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+x*A*subst(A, x, x*A+x*O(x^n))+x^2*A^2*subst(A', x, x*A+x*O(x^n))); polcoeff(A, n)}

for(n=0, 25, print1(a(n), ", "))

(PARI) {a(n)=local(G=1+x); for(k=0, n, G=1+x*deriv(serreverse(x/(G+x^2*O(x^n))))); polcoeff(serreverse(x/G)/x, n)}

CROSSREFS

Cf. A113882.

Sequence in context: A003692 A166883 A145158 * A121629 A200793 A141625

Adjacent sequences:  A132067 A132068 A132069 * A132071 A132072 A132073

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Aug 08 2007

EXTENSIONS

More terms and name changed by Paul D. Hanna, Apr 28 2012.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 04:14 EST 2019. Contains 329784 sequences. (Running on oeis4.)