This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A132069 Expansion of eta(q) * eta(q^2)^2 * eta(q^5)^3 / eta(q^10)^2 in powers of q. 2
 1, -1, -3, 2, 1, -1, 6, 6, -7, -7, -3, -12, -2, 12, 18, 2, 9, 16, -21, -20, 1, -12, -36, 22, 14, -1, 36, 20, -6, -30, 6, -32, -23, 24, 48, 6, 7, 36, -60, -24, -7, -42, -36, 42, 12, -7, 66, 46, -18, -43, -3, -32, -12, 52, 60, -12, 42, 40, -90, -60, -2, -62, -96, 42, 41, 12, 72, 66, -16, -44, 18, -72, -49, 72, 108, 2, 20, 72 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). Denoted by z(q) = q d/dq log k(q) in Cooper (2009) where k() is the g.f. of A112274. - Michael Somos, Jul 08 2012 REFERENCES B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 253 Eq. (8.12) S. Cooper, On Ramanujan's function k(q)=r(q)r^2(q^2), Ramanujan J., 20 (2009), 311-328. See p. 312, eq. (1.4) LINKS G. C. Greubel, Table of n, a(n) for n = 0..10000 Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of (5 * phi(-q) * phi(-q^5)^3 - phi(-q)^3 * phi(-q^5)) / 4 in powers of q where phi() is a Ramanujan theta function. Euler transform of period 10 sequence [-1, -3, -1, -3, -4, -3, -1, -3, -1, -4, ...]. a(n) = -b(n) where b() is multiplicative with b(5^e) = 1, b(2^e) = 2 - ((-2)^(e+1) - 1) / (-2 - 1), b(p^e) = (p^(e+1) - 1) / (p - 1) if p == 1, 9 (mod 10), b(p^e) = ((-p)^(e+1) - 1) / (-p - 1) if p == 3, 7 (mod 10). G.f.: Product_{k>0} (1 - x^k) * (1 - x^(2*k))^2 * (1 - x^(5*k)) / (1 + x^(5*k))^2. G.f.: 1 + Sum_{k>0} (-1)^k * k * x^k / (1 - x^k) * Kronecker(5, k). G.f. is a period 1 Fourier series which satisfies f(-1 / (10 t)) = 2000^(1/2) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A129303. a(n) = (-1)^n * A113185(n). EXAMPLE G.f. = 1 - q - 3*q^2 + 2*q^3 + q^4 - q^5 + 6*q^6 + 6*q^7 - 7*q^8 - 7*q^9 +... MATHEMATICA a[ n_] := If[ n < 1, Boole[n == 0], DivisorSum[ n, KroneckerSymbol[ 5, #] # (-1)^# &]]; (* Michael Somos, Aug 26 2015 *) a[ n_] := SeriesCoefficient[ QPochhammer[ q] QPochhammer[ q^2]^2 QPochhammer[ q^5]^3 / QPochhammer[ q^10]^2, {q, 0, n}]; (* Michael Somos, Aug 26 2015 *) a[ n_] := SeriesCoefficient[ (5 EllipticTheta[ 4, 0, q] EllipticTheta[ 4, 0, q^5]^3 - EllipticTheta[ 4, 0, q]^3 EllipticTheta[ 4, 0, q^5])/4, {q, 0, n}]; (* Michael Somos, Aug 26 2015 *) PROG (PARI) {a(n) = if( n<1, n==0, sumdiv( n, d, kronecker(5, d) * d * (-1)^d))}; (PARI) {a(n) = my(A, p, e, a1); if( n<1, n==0, A = factor(n); -prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==5, 1, p>2, p *= kronecker(5, p); (p^(e+1) - 1) / (p - 1), (5 + (-2)^(e+1)) / 3)))}; (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^2 + A)^2 * eta(x^5 + A)^3 / eta(x^10 + A)^2, n))}; CROSSREFS Cf. A112274, A113185, A129303. Sequence in context: A176669 A058280 A113185 * A259786 A254410 A073201 Adjacent sequences:  A132066 A132067 A132068 * A132070 A132071 A132072 KEYWORD sign AUTHOR Michael Somos, Aug 08 2007, Mar 20 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 22:47 EDT 2019. Contains 328315 sequences. (Running on oeis4.)