

A132067


Composite integers n where d_{k+2} + d_k < 2*d_{k+1} for at least one k (1<=k<=A000005(n)2), where d_k is the kth positive divisor of n.


0



20, 30, 35, 40, 42, 56, 60, 63, 70, 72, 77, 80, 84, 88, 90, 99, 100, 105, 110, 112, 117, 120, 126, 130, 132, 140, 143, 144, 150, 154, 156, 160, 165, 168, 175, 176, 180, 182, 187, 189, 195, 198, 200, 204, 208, 209, 210, 216, 220, 221, 224, 238, 240, 245, 247
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

In other words, the sequence contains those positive integers n where the difference (d_{k+1}  d_k) between some pair of consecutive positive divisors of n is greater than the difference (d_{k+2}  d_{k+1}) between the next pair of consecutive divisors of n.


LINKS

Table of n, a(n) for n=1..55.


EXAMPLE

The positive divisors of 20 are 1,2,4,5,10,20. d_2 + d_4 = 2 + 5 is < 2 * d_3 = 2 * 4. So 20 is in the sequence.


MATHEMATICA

f[n_] := Block[{d}, d = Divisors[n]; d  Prepend[Most[d], 0]]; Flatten[Position[OrderedQ /@ Array[f, 260], False]] (* Ray Chandler, Nov 01 2007 *)
a = {}; For[n = 1, n < 1000, n++, c = 0; For[j = 1, j < Length[Divisors[n]]  1, j++, If[Divisors[n][[j]] + Divisors[n][[j + 2]] < 2*Divisors[n][[j + 1]], c = 1]]; If[c == 1, AppendTo[a, n]]]; a (* Stefan Steinerberger, Oct 31 2007 *)


CROSSREFS

Sequence in context: A107714 A029721 A224400 * A072989 A216603 A166730
Adjacent sequences: A132064 A132065 A132066 * A132068 A132069 A132070


KEYWORD

nonn


AUTHOR

Leroy Quet, Oct 30 2007


EXTENSIONS

Extended by Ray Chandler and Stefan Steinerberger, Nov 01 2007


STATUS

approved



