login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows, the Bell transform of Product_{k=0..n} 7*k+1 without column 0.
27

%I #25 Aug 28 2019 15:44:17

%S 1,8,1,120,24,1,2640,672,48,1,76560,22800,2160,80,1,2756160,920160,

%T 104880,5280,120,1,118514880,43243200,5639760,347760,10920,168,1,

%U 5925744000,2323918080,336510720,24071040,937440,20160,224,1

%N Triangle read by rows, the Bell transform of Product_{k=0..n} 7*k+1 without column 0.

%C Previous name was: Triangle of numbers related to triangle A132057; generalization of Stirling numbers of second kind A008277, Lah-numbers A008297, ...

%C a(n,m) enumerates unordered n-vertex m-forests composed of m plane increasing 8-ary trees. See the F. Bergeron et al. reference, especially Table 1, first row, for the e.g.f. for m=1.

%C a(n,m) := S2(8; n,m) is the eighth triangle of numbers in the sequence S2(k;n,m), k=1..7: A008277 (unsigned Stirling 2nd kind), A008297 (unsigned Lah), A035342, A035469, A049029, A049385, A092082, respectively. a(n,1)=A045754(n), n>=1.

%H F. Bergeron, Ph. Flajolet and B. Salvy, <a href="http://algo.inria.fr/flajolet/Publications/BeFlSa92.pdf">Varieties of Increasing Trees</a>, Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1992, pp. 24-48.

%H P. Blasiak, K. A. Penson and A. I. Solomon, <a href="http://dx.doi.org/10.1016/S0375-9601(03)00194-4">The general boson normal ordering problem</a>, Phys. Lett. A 309 (2003) 198-205.

%H P. Blasiak, K. A. Penson and A. I. Solomon, <a href="http://arXiv.org/abs/quant-ph/0402027">The general boson normal ordering problem</a>, arXiv:quant-ph/0402027, 2004.

%H W. Lang, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL3/LANG/lang.html">On generalizations of Stirling number triangles</a>, J. Integer Seqs., Vol. 3 (2000), #00.2.4.

%H M. Janjic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Janjic/janjic22.html">Some classes of numbers and derivatives</a>, JIS 12 (2009) 09.8.3

%H W. Lang, <a href="/A132056/a132056.txt">First 10 rows</a>.

%F a(n, m) = n!*A132057(n, m)/(m!*7^(n-m)); a(n+1, m) = (7*n+m)*a(n, m)+ a(n, m-1), n >= m >= 1; a(n, m) := 0, n<m; a(n, 0) := 0, a(1, 1)=1;

%F E.g.f. of m-th column: ((-1+(1-7*x)^(-1/7))^m)/m!.

%F a(n, m) = sum(|A051186(n, j)|*S2(j, m), j=m..n) (matrix product), with S2(j, m):= (j, m) (Stirling2 triangle). Priv. comm. with W. Lang by E. Neuwirth, Feb 15 2001; see also the 2001 Neuwirth reference. See the general comment on products of Jabotinsky matrices given under A035342.

%e {1}; {8,1}; {120,24,1}; {2640,672,48,1}; ...

%p # The function BellMatrix is defined in A264428.

%p # Adds (1,0,0,0, ..) as column 0.

%p BellMatrix(n -> mul(7*k+1, k=0..n), 8); # _Peter Luschny_, Jan 27 2016

%t a[n_, m_] := a[n, m] = ((m*a[n-1, m-1]*(m-1)! + (m+7*n-7)*a[n-1, m]*m!)*n!)/(n*m!*(n-1)!);

%t a[n_, m_] /; n < m = 0; a[_, 0] = 0; a[1, 1] = 1;

%t Flatten[Table[a[n, m], {n, 1, 8}, {m, 1, n}]][[1 ;; 36]]

%t (* _Jean-François Alcover_, Jun 17 2011 *)

%t rows = 8;

%t a[n_, m_] := BellY[n, m, Table[Product[7k+1, {k, 0, j}], {j, 0, rows}]];

%t Table[a[n, m], {n, 1, rows}, {m, 1, n}] // Flatten (* _Jean-François Alcover_, Jun 22 2018 *)

%Y Cf. A132060 (row sums), A132061 (alternating row sums).

%Y Cf. A092082 S2(7) triangle.

%K nonn,easy,tabl

%O 1,2

%A _Wolfdieter Lang_ Sep 14 2007

%E New name from _Peter Luschny_, Jan 27 2016