OFFSET
0,1
FORMULA
Equals lim inf_{n->oo} Product_{k=0..floor(log_8(n))} floor(n/8^k)*8^k/n.
Equals lim inf_{n->oo} A132032(n)/n^(1+floor(log_8(n)))*8^(1/2*(1+floor(log_8(n)))*floor(log_8(n))).
Equals (1/2)*exp(-Sum_{n>0} 8^(-n)*Sum_{k|n} 1/(k*2^k)).
Equals Product_{n>=0} (1 - 1/A013730(n)). - Amiram Eldar, May 09 2023
EXAMPLE
0.46456888368647639098...
MATHEMATICA
RealDigits[QPochhammer[1/2, 1/8], 10, 120][[1]] (* Harvey P. Dale, May 23 2011 *)
PROG
(PARI) prodinf(k=0, 1 - 1/(2*8^k)) \\ Amiram Eldar, May 09 2023
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Hieronymus Fischer, Aug 14 2007
EXTENSIONS
Name corrected by Amiram Eldar, May 09 2023
STATUS
approved