OFFSET
0,11
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-7/24) * eta(q^2)^2 * eta(q^8) * eta(q^12)^2/( eta(q) * eta(q^4) * eta(q^24)) in powers of q.
Euler transform of period 24 sequence [ 1, -1, 1, 0, 1, -1, 1, -1, 1, -1, 1, -2, 1, -1, 1, -1, 1, -1, 1, 0, 1, -1, 1, -2, ...].
a(25*n + 7) = a(n). a(25*n + 2) = a(25*n + 12) = a(25*n + 17) = a(25*n + 22) = 0.
2 * a(n) = A123484(24*n + 7).
Expansion of chi(x) * f(-x^8) * phi(-x^12) in powers of x where phi(), chi(), f() are Ramanujan theta functions. - Michael Somos, Nov 06 2015
EXAMPLE
G.f. = 1 + x + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + 2*x^10 + x^11 + ...
G.f. = q^7 + q^31 + q^79 + q^103 + q^127 + q^151 + q^175 + q^199 + q^223 + ...
MATHEMATICA
a[ n_] := If[ n < 0, 0, With[ {m = 24 n + 7}, DivisorSum[ m, KroneckerSymbol[ -12, #] Mod[m/#, 2] &] / 2]]; (* Michael Somos, Nov 06 2015 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ x^8] EllipticTheta[ 4, 0, x^12] QPochhammer[ -x, x^2], {x, 0, n}]; (* Michael Somos, Nov 06 2015 *)
a[ n_] := SeriesCoefficient[ (1/2) x^(-1/8) EllipticTheta[ 2, 0, x^(1/2)] EllipticTheta[ 4, 0, x^12] QPochhammer[ -x^4, x^4], {x, 0, n}]; (* Michael Somos, Nov 06 2015 *)
PROG
(PARI) {a(n) = if( n<0, 0, n = 24*n + 7; sumdiv(n, d, kronecker( -12, d) * (n/d %2)) / 2)};
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^8 + A) * eta(x^12 + A)^2 / (eta(x + A) * eta(x^4 + A) * eta(x^24 + A)), n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Aug 02 2007
STATUS
approved