login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A131838 Multiplicative persistence of Woodall numbers. 1
0, 0, 1, 2, 3, 3, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 5, 2, 2, 1, 1, 8, 3, 1, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

After the 111th term, all the numbers have some digits equal to zero, thus the persistence is equal to 1.

LINKS

Table of n, a(n) for n=1..105.

EXAMPLE

Woodall number 159 --> 1*5*9=45 --> 4*5=20 --> 2*0=0 thus persistence is 3.

MAPLE

P:=proc(n) local i, k, w, ok, cont; for i from 1 by 1 to n do w:=1; k:=i*2^i-1; ok:=1; if k<10 then print(0); else cont:=1; while ok=1 do while k>0 do w:=w*(k-(trunc(k/10)*10)); k:=trunc(k/10); od; if w<10 then ok:=0; print(cont); else cont:=cont+1; k:=w; w:=1; fi; od; fi; od; end: P(120);

CROSSREFS

Cf. A003261, A131841.

Sequence in context: A307429 A261283 A123548 * A274885 A287732 A334223

Adjacent sequences: A131835 A131836 A131837 * A131839 A131840 A131841

KEYWORD

easy,nonn,base

AUTHOR

Paolo P. Lava and Giorgio Balzarotti, Jul 20 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 7 12:44 EST 2023. Contains 360123 sequences. (Running on oeis4.)