login
A131822
Increment each prime factor for each term of the least prime signature sequence derived from A080577.
4
1, 3, 9, 15, 27, 45, 105, 81, 135, 225, 315, 1155, 243, 405, 675, 945, 1575, 3465, 15015, 729, 1215, 2025, 2835, 3375, 4725, 10395, 11025, 17325, 45045, 255255, 2187, 3645, 6075, 8505, 10125, 14175, 31185, 23625, 33075, 51975, 135135, 121275, 225225
OFFSET
1,2
FORMULA
a(n) = A003961(A036035(n-1)). - R. J. Mathar, Nov 11 2007
EXAMPLE
The term 30 = 2*3*5 becomes 105 = 3*5*7.
From A080577 we obtain
1
2
4, 6
8, 12, 30
16, 24, 36, 60, ...
etc.
so the sequence begins
1
3
9, 15
27, 45, 105
81, 135, 225, 315, ...
etc.
MAPLE
A003961 := proc(n) local ifs, i ; ifs := ifactors(n)[2] ; mul(nextprime(op(1, i))^op(2, i), i=ifs) ; end: A036042 := proc(n) local a, nredu ; a := 0 ; nredu := n+1 ; while nredu > 0 do nredu := nredu-combinat[numbpart](a) ; a := a+1 ; od: RETURN(a-1) ; end: A036035 := proc(n) local row, idx, pa, a, i ; if n = 0 then 1 ; else row := A036042(n) ; idx := n-add(combinat[numbpart](i), i=0..row-1) ; pa := op(-idx-1, combinat[partition](row)) ; a := 1; for i from 1 to nops(pa) do a := a*ithprime(i)^op(-i, pa) ; od; RETURN(a) ; fi ; end: A131822 := proc(n) A003961(A036035(n-1)) ; end: seq(A131822(n), n=1..80) ; # R. J. Mathar, Nov 11 2007
CROSSREFS
Sequence in context: A147516 A372509 A233819 * A131801 A280963 A122819
KEYWORD
tabf,easy,nonn
AUTHOR
Alford Arnold, Jul 19 2007
EXTENSIONS
Corrected and extended by R. J. Mathar, Nov 11 2007
STATUS
approved