login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A131809 Multiplicative persistence of Catalan numbers. 1
0, 0, 0, 0, 1, 1, 1, 3, 1, 5, 4, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,8

COMMENTS

After the 57th terms all the numbers have some digits equal to zero thus the persistence is equal to 1.

LINKS

Table of n, a(n) for n=0..100.

EXAMPLE

Catalan number 429 -> 4*2*9=72 -> 7*2=14 -> 1*4=4 thus persistence is 3

MAPLE

P:=proc(n) local i, k, w, ok, cont; for i from 0 by 1 to n do k:=(2*i)!/(i!*(i+1)!); w:=1; ok:=1; if k<10 then print(0); else cont:=1; while ok=1 do while k>0 do w:=w*(k-(trunc(k/10)*10)); k:=trunc(k/10); od; if w<10 then ok:=0; print(cont); else cont:=cont+1; k:=w; w:=1; fi; od; fi; od; end: P(100);

CROSSREFS

Cf. A003001, A006050, A000108.

Sequence in context: A308502 A308674 A308676 * A016574 A210560 A208922

Adjacent sequences:  A131806 A131807 A131808 * A131810 A131811 A131812

KEYWORD

easy,nonn,base

AUTHOR

Paolo P. Lava and Giorgio Balzarotti, Jul 18 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 14 01:24 EST 2019. Contains 329108 sequences. (Running on oeis4.)