login
A131809
Multiplicative persistence of Catalan numbers.
1
0, 0, 0, 0, 1, 1, 1, 3, 1, 5, 4, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
0,8
COMMENTS
After the 57th terms all the numbers have some digits equal to zero thus the persistence is equal to 1.
EXAMPLE
Catalan number 429 -> 4*2*9=72 -> 7*2=14 -> 1*4=4 thus persistence is 3
MAPLE
P:=proc(n) local i, k, w, ok, cont; for i from 0 by 1 to n do k:=(2*i)!/(i!*(i+1)!); w:=1; ok:=1; if k<10 then print(0); else cont:=1; while ok=1 do while k>0 do w:=w*(k-(trunc(k/10)*10)); k:=trunc(k/10); od; if w<10 then ok:=0; print(cont); else cont:=cont+1; k:=w; w:=1; fi; od; fi; od; end: P(100);
CROSSREFS
KEYWORD
easy,nonn,base
AUTHOR
STATUS
approved