login
Number of 1s in the 1's complement of the 32-bit binary representation of n.
1

%I #7 Jan 04 2020 12:58:51

%S 32,31,31,30,31,30,30,29,31,30,30,29,30,29,29,28,31,30,30,29,30,29,29,

%T 28,30,29,29,28,29,28,28,27,31,30,30,29,30,29,29,28,30,29,29,28,29,28,

%U 28,27,30,29,29,28,29,28,28,27,29,28,28,27,28,27,27,26

%N Number of 1s in the 1's complement of the 32-bit binary representation of n.

%C This sequence is finite with a total of 2^32 terms. - _Andrew Howroyd_, Jan 04 2020

%H Andrew Howroyd, <a href="/A131762/b131762.txt">Table of n, a(n) for n = 0..4095</a>

%F a(n) = 32 - (number of 1s in binary representation of n).

%F a(n) = 32 - A000120(n). - _Andrew Howroyd_, Jan 04 2020

%e a(7) = 32 - (number of 1s in 00000000000000000000000000000111) = 32 - 3 = 29.

%o (PARI) a(n)={32-hammingweight(n)} \\ _Andrew Howroyd_, Jan 04 2020

%Y Cf. A000120.

%K nonn,easy,fini

%O 0,1

%A Rachit Agrawal (rachit_agrawal(AT)daiict.ac.in), Oct 23 2007

%E a(0) prepended and terms a(14) and beyond from _Andrew Howroyd_, Jan 04 2020