login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A131756 Period 3: repeat [2, -1, 3]. 1
2, -1, 3, 2, -1, 3, 2, -1, 3, 2, -1, 3, 2, -1, 3, 2, -1, 3, 2, -1, 3, 2, -1, 3, 2, -1, 3, 2, -1, 3, 2, -1, 3, 2, -1, 3, 2, -1, 3, 2, -1, 3, 2, -1, 3, 2, -1, 3, 2, -1, 3, 2, -1, 3, 2, -1, 3, 2, -1, 3, 2, -1, 3, 2, -1, 3, 2, -1, 3, 2, -1, 3, 2, -1, 3, 2, -1, 3, 2, -1, 3, 2, -1, 3, 2, -1, 3, 2, -1, 3, 2, -1, 3, 2, -1, 3, 2, -1, 3, 2, -1, 3, 2, -1, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Table of n, a(n) for n=0..104.

Index entries for linear recurrences with constant coefficients, signature (0,0,1).

FORMULA

a(n) = (1/9)*{7*(n mod 3)-8*[(n+1) mod 3]+13*[(n+3) mod 3]}. - Paolo P. Lava, Oct 08 2007

a(n) = 4/3+2/3*cos(2/3*Pi*n)-4/3*3^(1/2)*sin(2/3*Pi*n). - R. J. Mathar, Nov 15 2007

G.f.: (2-x+3*x^2)/(1-x^3). - Jaume Oliver Lafont, Mar 24 2009

a(n) = a(n-3) for n>2. - Wesley Ivan Hurt, Jul 01 2016

MAPLE

seq(op([2, -1, 3]), n=0..50); # Wesley Ivan Hurt, Jul 01 2016

MATHEMATICA

PadRight[{}, 100, {2, -1, 3}] (* Wesley Ivan Hurt, Jul 01 2016 *)

PROG

(PARI) a(n)=[2, -1, 3][1+n%3] \\ Jaume Oliver Lafont, Mar 24 2009

(MAGMA) &cat [[2, -1, 3]^^30]; // Wesley Ivan Hurt, Jul 01 2016

CROSSREFS

Cf. A130784.

Sequence in context: A118123 A181743 A174737 * A212620 A194859 A194838

Adjacent sequences:  A131753 A131754 A131755 * A131757 A131758 A131759

KEYWORD

sign,easy

AUTHOR

Paul Curtz, Oct 04 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 19 16:10 EST 2017. Contains 294936 sequences.