login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A131742 a(4n) = a(4n+1) = 0, a(4n+2) = 3n+1, a(4n+3) = 3n+2. 1
0, 0, 1, 2, 0, 0, 4, 5, 0, 0, 7, 8, 0, 0, 10, 11, 0, 0, 13, 14, 0, 0, 16, 17, 0, 0, 19, 20, 0, 0, 22, 23, 0, 0, 25, 26, 0, 0, 28, 29, 0, 0, 31, 32, 0, 0, 34, 35, 0, 0, 37, 38, 0, 0, 40, 41, 0, 0, 43, 44, 0, 0, 46, 47, 0, 0, 49, 50, 0, 0, 52, 53, 0, 0, 55, 56, 0, 0, 58, 59, 0, 0, 61, 62, 0, 0, 64 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Michael De Vlieger, Table of n, a(n) for n = 0..10000

Index entries for linear recurrences with constant coefficients, signature (1,-1,1,1,-1,1,-1).

FORMULA

a(n) = (1/16)*(cos(n*Pi/2)+sin(n*Pi/2)-1)*((6n-3)*cos(n*Pi/2)+cos(n*Pi)+(6n-3)*sin(n*Pi/2)). - Wesley Ivan Hurt, Sep 24 2017

From Colin Barker, Oct 06 2017: (Start)

G.f.: x^2*(1 + x - x^2 + x^3 + x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)^2).

a(n) = a(n-1) - a(n-2) + a(n-3) + a(n-4) - a(n-5) + a(n-6) - a(n-7) for n>6.

(End)

MATHEMATICA

Table[Switch[Mod[n, 4], 2, 3 (n - 2)/4 + 1, 3, 3 (n - 3)/4 + 2, _, 0], {n, 0, 86}] (* Michael De Vlieger, Sep 25 2017 *)

PROG

(PARI) concat(vector(2), Vec(x^2*(1 + x - x^2 + x^3 + x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)^2) + O(x^100))) \\ Colin Barker, Oct 06 2017

CROSSREFS

Sequence in context: A085969 A117434 A115179 * A257813 A278280 A213370

Adjacent sequences:  A131739 A131740 A131741 * A131743 A131744 A131745

KEYWORD

nonn,easy

AUTHOR

Paul Curtz, Sep 20 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 16 07:41 EST 2017. Contains 296076 sequences.