login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A131685 a(n) = smallest positive number m such that c(i) = m (i^1 + 1) (i^2 + 2) ... (i^n + n) / n! takes integral values for all i>=0. 16
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 7, 7, 1, 1, 1, 1, 1, 11, 11, 11, 55, 143, 13, 91, 91, 91, 91, 91, 1001, 17017, 595595, 595595, 17017, 46189, 600457, 3002285, 3002285, 3002285, 3002285, 6605027, 3002285, 726869, 726869, 726869 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,14

COMMENTS

It appears that none of the terms are divisible by 3. - Alexander R. Povolotsky, Oct 18 2007

LINKS

Cyril Banderier, Table of n, a(n) for n = 1..100

Index to divisibility sequences

MAPLE

# Maple program from Cyril Banderier, Sep 18 2007:

List:=NULL: for n from 1 to 1000 do m:=1: #running till n=50 will last 2 min.

for i from 1 to numtheory[pi](n) do div:=ithprime(i): d:=1: e:=0: oldmini:=-1:mini:=0:

while oldmini<>mini do e:=e+1: #the last time consuming loop could be skipped by proving e<=floor(ln(n)/ln(div)):

d:=d*div; for x from 0 to d-1 do [seq((x &^k mod d)+k mod d, k=1..n)]:contrib[d, x]:=nops(select(has, %, 0)): od:

L:=seq(add(contrib[div^j, x mod div^j], j=1..e), x=0..div^e-1); oldmini:=mini: mini:=min(L): od:

if mini<padic[ordp](n!, div) then m:=m*div^(padic[ordp](n!, div)-mini) fi; od: print(n, m); List:=List, m: od:

[List];

CROSSREFS

Cf. A000027 (for n=1), A064808 (n=2), A131509 (n=3), A129995 (n=4), A131675 (n=5), ..., A131680 (n=10).

See also A049614.

Sequence in context: A252799 A109939 A022619 * A019860 A011422 A051726

Adjacent sequences:  A131682 A131683 A131684 * A131686 A131687 A131688

KEYWORD

nonn

AUTHOR

Alexander R. Povolotsky and Peter J. C. Moses, Sep 12 2007, revised Sep 17 2007

EXTENSIONS

More terms from Cyril Banderier, Sep 17 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 17 20:06 EST 2018. Contains 299296 sequences. (Running on oeis4.)