login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A131572 a(0)=0 and a(1)=1, continued such that absolute values of 2nd differences equal the original sequence. 4
0, 1, 2, 2, 4, 4, 8, 8, 16, 16, 32, 32, 64, 64, 128, 128, 256, 256, 512, 512, 1024, 1024, 2048, 2048, 4096, 4096, 8192, 8192, 16384, 16384, 32768, 32768, 65536, 65536, 131072, 131072, 262144, 262144, 524288, 524288, 1048576, 1048576 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

This is the main sequence of a family of sequences starting at a(0)=A and a(1)=B, continuing a(3,...)= 2B, 2B, 4B, 4B, 8B, 8B, 16B, 16B, 32B, 32B, .. such that the absolute values of the 2nd differences, abs(a(n+2)-2*a(n+1)+a(n)), equal the original sequence. Alternatively starting at a(0)=a(1)=1 gives A016116.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..2000

Index entries for linear recurrences with constant coefficients, signature (0,2).

FORMULA

a(n) = 2*a(n-2), n>2.

O.g.f.: x*(1+2*x)/(1-2*x^2). - R. J. Mathar, Jul 16 2008

a(n) = A016116(n) - A000007(n), that is, a(0)=0, a(n)=A016116(n) for n>=1 - Bruno Berselli, Apr 13 2011

First differences: a(n+1)-a(n)=A131575(n).

Second differences: A131575(n+1)-A131575(n)= (-1)^n*a(n).

MATHEMATICA

LinearRecurrence[{0, 2}, {0, 1, 2}, 50] (* Harvey P. Dale, Jul 10 2018 *)

PROG

(MAGMA) [2^Floor(n/2)-0^n: n in [0..50]]; // Vincenzo Librandi, Aug 18 2011

CROSSREFS

Sequence in context: A117575 * A152166 A320770 A016116 A060546 A163403

Adjacent sequences:  A131569 A131570 A131571 * A131573 A131574 A131575

KEYWORD

nonn,easy

AUTHOR

Paul Curtz, Aug 28 2007

EXTENSIONS

Edited by R. J. Mathar, Jul 16 2008

More terms from Vincenzo Librandi, Aug 18 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 16 11:16 EST 2018. Contains 317271 sequences. (Running on oeis4.)