login
A131540
Exponent of least power of 2 having exactly n consecutive 6's in its decimal representation.
1
0, 4, 46, 157, 222, 220, 2269, 11019, 18842, 192918, 192916, 271979, 1039316, 7193133, 14060686, 97428976
OFFSET
0,2
LINKS
Popular Computing (Calabasas, CA), Two Tables, Vol. 1, (No. 9, Dec 1973), page PC9-16.
EXAMPLE
a(3)=157 because 2^157(i.e. 182687704666362864775460604089535377456991567872) is the smallest power of 2 to contain a run of 3 consecutive sixes in its decimal form.
MATHEMATICA
a = ""; Do[ a = StringJoin[a, "6"]; b = StringJoin[a, "6"]; k = 1; While[ StringPosition[ ToString[2^k], a] == {} || StringPosition[ ToString[2^k], b] != {}, k++ ]; Print[k], {n, 1, 10} ]
KEYWORD
more,nonn,base
AUTHOR
Shyam Sunder Gupta, Aug 26 2007
EXTENSIONS
Two more terms from Sean A. Irvine, May 31 2010
a(13)-a(14) from Lars Blomberg, Jan 24 2013
a(15) from Bert Dobbelaere, Mar 07 2019
a(0)=0 prepended by Paul Geneau de Lamarlière, Jul 20 2024
STATUS
approved