login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A131282 Period 6: repeat [1, 2, 3, 3, 4, 5]. 2
1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Terms of the simple continued fraction of 71/(sqrt(44310)-161). - Paolo P. Lava, Aug 05 2009

Decimal expansion of 13705/111111. - Klaus Brockhaus, May 17 2010

LINKS

Table of n, a(n) for n=0..104.

Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,1).

FORMULA

a(n) = (1/30)*(26*(n mod 6)+((n+1) mod 6)+((n+2) mod 6)+6*((n+3) mod 6)+((n+4) mod 6)+((n+5) mod 6)). - Paolo P. Lava, Nov 19 2007

a(n) = 3 - 2*cos(Pi*n/3)/3 - 2*sin(Pi*n/3)/sqrt(3) - cos(2*Pi*n/3) - sin(2*Pi*n/3)/sqrt(3) - (-1)^n/3. - R. J. Mathar, Oct 08 2011

From Wesley Ivan Hurt, Jun 20 2016: (Start)

G.f.: (1+2*x+3*x^2+3*x^3+4*x^4+5*x^5)/(1-x^6).

a(n) = a(n-6) for n>5. (End)

MAPLE

A131282:=n->[1, 2, 3, 3, 4, 5][(n mod 6)+1]: seq(A131282(n), n=0..100); # Wesley Ivan Hurt, Jun 20 2016

MATHEMATICA

PadLeft[{}, 18*6, {1, 2, 3, 3, 4, 5}] (* Harvey P. Dale, Sep 23 2011 *)

PROG

(PARI) a(n)=1+n%6-n%6\3 \\ Jaume Oliver Lafont, Aug 28 2009

(MAGMA) &cat [[1, 2, 3, 3, 4, 5]^^20]; // Wesley Ivan Hurt, Jun 20 2016

CROSSREFS

Cf. A178038 (decimal expansion of (161+sqrt(44310))/259). - Klaus Brockhaus, May 17 2010

Sequence in context: A130121 A007898 A110533 * A305296 A114544 A154726

Adjacent sequences:  A131279 A131280 A131281 * A131283 A131284 A131285

KEYWORD

nonn,easy

AUTHOR

Paul Curtz, Oct 21 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 14 22:45 EST 2019. Contains 329135 sequences. (Running on oeis4.)