|
|
A131282
|
|
Period 6: repeat [1, 2, 3, 3, 4, 5].
|
|
2
|
|
|
1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Terms of the simple continued fraction of 71/(sqrt(44310)-161). - Paolo P. Lava, Aug 05 2009
Decimal expansion of 13705/111111. - Klaus Brockhaus, May 17 2010
|
|
LINKS
|
Table of n, a(n) for n=0..104.
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,1).
|
|
FORMULA
|
a(n) = (1/30)*(26*(n mod 6)+((n+1) mod 6)+((n+2) mod 6)+6*((n+3) mod 6)+((n+4) mod 6)+((n+5) mod 6)). - Paolo P. Lava, Nov 19 2007
a(n) = 3 - 2*cos(Pi*n/3)/3 - 2*sin(Pi*n/3)/sqrt(3) - cos(2*Pi*n/3) - sin(2*Pi*n/3)/sqrt(3) - (-1)^n/3. - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jun 20 2016: (Start)
G.f.: (1+2*x+3*x^2+3*x^3+4*x^4+5*x^5)/(1-x^6).
a(n) = a(n-6) for n>5. (End)
|
|
MAPLE
|
A131282:=n->[1, 2, 3, 3, 4, 5][(n mod 6)+1]: seq(A131282(n), n=0..100); # Wesley Ivan Hurt, Jun 20 2016
|
|
MATHEMATICA
|
PadLeft[{}, 18*6, {1, 2, 3, 3, 4, 5}] (* Harvey P. Dale, Sep 23 2011 *)
|
|
PROG
|
(PARI) a(n)=1+n%6-n%6\3 \\ Jaume Oliver Lafont, Aug 28 2009
(Magma) &cat [[1, 2, 3, 3, 4, 5]^^20]; // Wesley Ivan Hurt, Jun 20 2016
|
|
CROSSREFS
|
Cf. A178038 (decimal expansion of (161+sqrt(44310))/259). - Klaus Brockhaus, May 17 2010
Sequence in context: A130121 A007898 A110533 * A305296 A114544 A154726
Adjacent sequences: A131279 A131280 A131281 * A131283 A131284 A131285
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Paul Curtz, Oct 21 2007
|
|
STATUS
|
approved
|
|
|
|