login
A131268
Triangle read by rows: T(n,k) = 2*binomial(n-floor((k+1)/2),floor(k/2)) - 1, 0<=k<=n.
3
1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 3, 1, 1, 1, 7, 5, 5, 1, 1, 1, 9, 7, 11, 5, 1, 1, 1, 11, 9, 19, 11, 7, 1, 1, 1, 13, 11, 29, 19, 19, 7, 1, 1, 1, 15, 13, 41, 29, 39, 19, 9, 1, 1, 1, 17, 15, 55, 41, 69, 39, 29, 9, 1, 1, 1, 19, 17, 71, 55, 111, 69, 69, 29, 11, 1, 1, 1, 21, 19, 89, 71, 167, 111, 139, 69, 41, 11, 1
OFFSET
0,9
COMMENTS
Row sums are in A131269. Reversal = triangle A131270.
FORMULA
Equals 2*A065941 - A000012, where A065941 = Pascal's triangle with repeated columns; and A000012 = (1; 1,1; 1,1,1;...) as an infinite lower triangular matrix.
EXAMPLE
Triangle begins:
1;
1, 1;
1, 1, 1;
1, 1, 3, 1;
1, 1, 5, 3, 1;
1, 1, 7, 5, 5, 1;
1, 1, 9, 7, 11, 5, 1;
1, 1, 11, 9, 19, 11, 7, 1;
1, 1, 13, 11, 29, 19, 19, 7, 1;
1, 1, 15, 13, 41, 29, 39, 19, 9, 1;
1, 1, 17, 15, 55, 41, 69, 39, 29, 9, 1;
1, 1, 19, 17, 71, 55, 111, 69, 69, 29, 11, 1;
1, 1, 21, 19, 89, 71, 167, 111, 139, 69, 41, 11, 1;
...
MAPLE
T := proc (n, k) options operator, arrow; 2*binomial(n-floor((1/2)*k+1/2), floor((1/2)*k))-1 end proc: for n from 0 to 12 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form. - Emeric Deutsch, Jul 15 2007
MATHEMATICA
Table[2*Binomial[n -Floor[(k+1)/2], Floor[k/2]] -1, {n, 0, 14}, {k, 0, n}]//Flatten (* G. C. Greubel, Jul 10 2019 *)
PROG
(Magma) [2*Binomial(n-Floor((k+1)/2), Floor(k/2))-1: k in [0..n], n in [0..14]]; // Bruno Berselli, May 03 2012
(PARI) T(n, k) = 2*binomial(n- (k+1)\2, k\2) -1; \\ G. C. Greubel, Jul 10 2019
(Sage) [[2*binomial(n -floor((k+1)/2), floor(k/2)) -1 for k in (0..n)] for n in (0..14)] # G. C. Greubel, Jul 10 2019
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Jun 23 2007
EXTENSIONS
More terms from Emeric Deutsch, Jul 15 2007
STATUS
approved