login
A131266
Decimal expansion of 2*sqrt(3)*log(2)/Pi.
2
7, 6, 4, 3, 0, 4, 1, 3, 8, 8, 4, 5, 6, 8, 8, 1, 9, 7, 2, 0, 5, 6, 2, 4, 9, 9, 9, 0, 4, 0, 6, 0, 0, 0, 1, 6, 9, 0, 4, 5, 5, 6, 2, 3, 7, 1, 1, 5, 0, 4, 9, 0, 6, 1, 3, 0, 3, 9, 2, 5, 7, 6, 6, 7, 8, 0, 8, 6, 1, 4, 1, 7, 1, 3, 2, 9, 2, 4, 4, 5, 1, 7, 1, 3, 8, 1, 1, 5, 2, 8, 7, 4, 9, 6, 7, 8, 8, 1, 2, 8, 7, 7, 5, 3, 4
OFFSET
0,1
COMMENTS
Also: a constant describing the peak location of the density of states of the minimal difference partition problem in the fermionic case [Comtet et al.].
LINKS
A. Comtet, S. N. Majumdar and S. Ouvry, Integer Partitions and Exclusion Statistics, arXiv:0705.2640 [cond-mat.stat-mech], 2007, eq (6).
FORMULA
Equals lim A257639(n)/sqrt(n) when n tends to infinity.
EXAMPLE
0.76430413884568819720562499904060001690455623711504906130392...
MATHEMATICA
RealDigits[Sqrt[3] Log[4]/Pi, 10, 111][[1]] (* Robert G. Wilson v, Nov 08 2015 *)
PROG
(PARI) print(2*sqrt(3)*log(2)/Pi);
(PARI) default(realprecision, 60);
eval(vecextract(Vec(Str(2*sqrt(3)*log(2)/Pi)), "3..-2")) \\ Gheorghe Coserea, Nov 07 2015
CROSSREFS
Sequence in context: A154730 A242967 A228628 * A258094 A258008 A021089
KEYWORD
cons,easy,nonn
AUTHOR
R. J. Mathar, Sep 28 2007
EXTENSIONS
Leading zero removed by R. J. Mathar, Feb 06 2009
STATUS
approved