login
Decimal expansion of the negative of the first derivative of the Gamma Function at 1/2.
2

%I #10 May 26 2017 02:41:07

%S 3,4,8,0,2,3,0,9,0,6,9,1,3,2,6,2,0,2,6,9,3,8,5,9,5,1,9,8,1,4,4,3,4,9,

%T 7,5,0,0,3,2,4,2,9,3,3,4,5,0,3,7,6,0,2,1,5,1,5,4,3

%N Decimal expansion of the negative of the first derivative of the Gamma Function at 1/2.

%H G. C. Greubel, <a href="/A131265/b131265.txt">Table of n, a(n) for n = 1..10000</a>

%H T. Amdeberhan, L. Medina and V. H. Moll, <a href="http://arXiv.org/abs/0705.2379">The integrals in Gradshteyn and Ryzhik. Part 5: Some trigonometric integrals</a>, arXiv:0705.2379 [math.CA], 2007, example 3.1.

%F Equals A020759 * A002161.

%e 3.4802309069132620269385951981443497500324293345037602151543...

%t RealDigits[ Sqrt[Pi]*PolyGamma[0, 1/2], 10, 59] // First (* _Jean-François Alcover_, Feb 20 2013 *)

%o (PARI) print(sqrt(Pi)*(Euler+2*log(2)));

%Y Cf. A020759, A002161.

%K cons,easy,nonn

%O 1,1

%A _R. J. Mathar_, Sep 28 2007