|
|
A131264
|
|
Numbers n such that n divides 2^10 + 3^10 + 5^10 + ... + prime(n)^10.
|
|
2
|
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
Table of n, a(n) for n=1..9.
OEIS Wiki, Sums of powers of primes divisibility sequences.
|
|
MATHEMATICA
|
s = 0; Do[s = s + Prime[n]^10; If[ Mod[s, n] == 0, Print[n]], {n, 1000000}]
|
|
PROG
|
(PARI) s=0; n=0; forprime(p=2, 1e9, s+=p^10; if(s%n++==0, print1(n", "))) \\ Charles R Greathouse IV, Apr 14 2011
|
|
CROSSREFS
|
Cf. A085450 = smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n.
Cf. A007504, A045345, A171399, A128165, A233523, A050247, A050248.
Cf. A024450, A111441, A217599, A128166, A233862, A217600, A217601.
Sequence in context: A054803 A251216 A166807 * A053322 A274328 A025393
Adjacent sequences: A131261 A131262 A131263 * A131265 A131266 A131267
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
Alexander Adamchuk, Jun 25 2007
|
|
EXTENSIONS
|
a(4) & a(5) from Robert G. Wilson v, Jun 28 2007
a(6)-a(9) from Charles R Greathouse IV, Apr 14 2011
|
|
STATUS
|
approved
|
|
|
|