login
A131244
Row sums of triangle A131243.
5
1, 3, 6, 14, 30, 67, 146, 322, 705, 1549, 3396, 7453, 16346, 35861, 78659, 172549, 378487, 830234, 1821136, 3994730, 8762543, 19220904, 42161568, 92482585, 202863051, 444985664, 976088107, 2141075804, 4696507779
OFFSET
0,2
COMMENTS
A131246 is a companion sequence.
FORMULA
G.f. ( 1+x-x^3-2*x^2 ) / ( 1-2*x-2*x^2+3*x^3+x^4 ). - R. J. Mathar, Jan 29 2011
EXAMPLE
a(4) = 30 = sum of row 4 terms of A131243: (8 + 7 + 10 + 4 + 1).
MAPLE
A065941 := proc(n, k) binomial(n-floor((k+1)/2), floor(k/2)) ; end proc:
A131243 := proc(n, k) local a, j ; a := 0 ; for j from k to n do a := a+ A065941(n, j)*A065941(j, k) ; end do: a ; end proc:
A131244 := proc(n) add(A131243(n, k), k=0..n) ; end proc:
seq(A131244(n), n=0..50) ; # R. J. Mathar, Jan 29 2011
PROG
(PARI) Vec((1+x-x^3-2*x^2)/(1-2*x-2*x^2+3*x^3+x^4)+O(x^99)) \\ Charles R Greathouse IV, Jun 12 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Jun 22 2007
STATUS
approved