login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A131224 Continued fraction expansion of 2*Pi/log(2). 1
9, 15, 2, 4, 1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 1, 3, 4, 1, 1, 1, 1, 24, 1, 2, 1, 1, 1, 20, 1, 2, 3, 6, 1, 1, 2, 49, 11, 3, 4, 2, 2, 2, 1, 6, 1, 11, 1, 1, 3, 29, 16, 1, 1, 5, 1, 9, 2, 2, 1, 17, 1, 1, 1, 1, 2, 1, 9, 1, 1, 11, 1, 12, 2, 12, 2, 2, 168, 1, 5, 1, 5, 1, 1, 1, 1, 6, 1, 2, 27, 1, 1, 1, 2, 1, 16, 3, 9, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Imaginary part of the first complex zero of the alternating zeta function. The pair a=1, b=2*Pi/log(2) is a counterexample to the incorrect reformulation of the Riemann Hypothesis in J. Havil's book Gamma: Exploring Euler's Constant. See Sondow (2012).

REFERENCES

J. Havil, Gamma: Exploring Euler's Constant, Princeton Univ. Press, 2003, p. 207.

LINKS

Table of n, a(n) for n=1..98.

J. Sondow, Zeros of the alternating zeta function on the line R(s)=1, arXiv:math/0209393 [math.NT], 2002-2003.

J. Sondow, Zeros of the alternating zeta function on the line R(s)=1, Amer. Math. Monthly 110 (2003) 435-437.

J. Sondow, A Simple Counterexample to Havil's "Reformulation" of the Riemann Hypothesis, arXiv:0706.2840 [math.NT], 2007-2010.

J. Sondow, A Simple Counterexample to Havil's "Reformulation" of the Riemann Hypothesis, Elemente der Mathematik 67 (2012), pp. 61-67.

EXAMPLE

9.0647202836543... = A019692 / A002162.

MATHEMATICA

ContinuedFraction[2*Pi/Log[2], 105] [[1]]

CROSSREFS

Cf. A131223.

Sequence in context: A272009 A298754 A166654 * A073920 A130119 A232395

Adjacent sequences:  A131221 A131222 A131223 * A131225 A131226 A131227

KEYWORD

cofr,nonn

AUTHOR

Jonathan Sondow, Jun 19 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 27 17:58 EST 2020. Contains 331296 sequences. (Running on oeis4.)