login
A131223
Decimal expansion of 2*Pi/log(2).
3
9, 0, 6, 4, 7, 2, 0, 2, 8, 3, 6, 5, 4, 3, 8, 7, 6, 1, 9, 2, 5, 5, 3, 6, 5, 8, 9, 1, 4, 3, 3, 3, 3, 3, 6, 2, 0, 3, 4, 3, 7, 2, 2, 9, 3, 5, 4, 4, 7, 5, 9, 1, 1, 6, 8, 3, 7, 2, 0, 3, 3, 0, 9, 5, 8, 8, 1, 2, 0, 1, 9, 0, 7, 4, 4, 2, 6, 1, 0, 2, 0, 4, 5, 1, 8, 1, 6, 7, 7, 5, 9, 2, 0, 8, 0, 3, 2, 1, 7, 9, 3, 0, 6, 1
OFFSET
1,1
COMMENTS
Imaginary part of the first complex zero of the alternating zeta function. The pair a=1, b=2*Pi/log(2) is a counterexample to the incorrect reformulation of the Riemann Hypothesis in J. Havil's book Gamma: Exploring Euler's Constant. See Sondow (2012).
Also the Bekenstein bound in natural (Planck) units: the information (in bits) contained in a system with mass m and radius r is at most this constant times m*r. - Charles R Greathouse IV, Aug 19 2015
REFERENCES
J. Havil, Gamma: Exploring Euler's Constant, Princeton Univ. Press, 2003, p. 207.
LINKS
J. Sondow, Zeros of the alternating zeta function on the line R(s)=1, arXiv:math/0209393 [math.NT], 2002-2003.
J. Sondow, Zeros of the alternating zeta function on the line R(s)=1, Amer. Math. Monthly 110 (2003) 435-437.
J. Sondow, A Simple Counterexample to Havil's "Reformulation" of the Riemann Hypothesis, Elemente der Mathematik 67 (2012), pp. 61-67.
EXAMPLE
9.0647202836543...
MATHEMATICA
RealDigits[ N[ 2*Pi/Log[2], 105]] [[1]]
PROG
(PARI) 2*Pi/log(2) \\ Charles R Greathouse IV, Aug 19 2015
CROSSREFS
Cf. A000796 = Pi, A002162 = log(2), A019692 = 2*Pi, A131224, A163973 = Pi/log(2).
Sequence in context: A197520 A068467 A372392 * A225464 A296566 A198213
KEYWORD
cons,nonn
AUTHOR
Jonathan Sondow, Jun 19 2007
STATUS
approved