login
A131217
Triangular sequence of a Gray code type made from Pascal's triangle modulo 2 as b(n,m)=Mod[binomial[n,m],2]:A047999: a(n,m)=Mod[b(n,m)+b(n,m+1),2].
0
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1
OFFSET
1,1
COMMENTS
An XOR of the sequence terms of A047999 is the algorithm.
FORMULA
b(n,m)=Mod[binomial[n,m],2]: a(n,m)=Mod[b(n,m)+b(n,m+1),2]
EXAMPLE
{1},
{1, 1},
{1, 1, 1},
{1, 1, 1, 1},
{1, 1, 0, 0, 1},
{1, 1, 0, 0, 1, 1},
{1, 1, 1, 0, 1, 0, 1},
{1, 1, 1, 1, 1, 1, 1, 1},
{1, 1, 0, 0, 0, 0, 0, 0, 1},
{1, 1, 0, 0, 0, 0, 0, 0, 1, 1},
{1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1}
MATHEMATICA
a = Table[Table[Mod[Binomial[n, m], 2], {m, 0, 10}], {n, 0, 10}]; b = Table[Table[If[m <= n && m > 1, Mod[a[[n, m]] + a[[n, m + 1]], 2], 1], {m, 0, n}], {n, 0, 10}]; Flatten[b]
CROSSREFS
Sequence in context: A242902 A196368 A178788 * A105567 A114213 A108358
KEYWORD
nonn,uned,tabl
AUTHOR
Roger L. Bagula, Sep 27 2007
STATUS
approved