This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A131217 Triangular sequence of a Gray code type made from Pascal's triangle modulo 2 as b(n,m)=Mod[binomial[n,m],2]:A047999: a(n,m)=Mod[b(n,m)+b(n,m+1),2]. 0
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS An XOR of the sequence terms of A047999 is the algorithm. LINKS FORMULA b(n,m)=Mod[binomial[n,m],2]: a(n,m)=Mod[b(n,m)+b(n,m+1),2] EXAMPLE {1}, {1, 1}, {1, 1, 1}, {1, 1, 1, 1}, {1, 1, 0, 0, 1}, {1, 1, 0, 0, 1, 1}, {1, 1, 1, 0, 1, 0, 1}, {1, 1, 1, 1, 1, 1, 1, 1}, {1, 1, 0, 0, 0, 0, 0, 0, 1}, {1, 1, 0, 0, 0, 0, 0, 0, 1, 1}, {1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1} MATHEMATICA a = Table[Table[Mod[Binomial[n, m], 2], {m, 0, 10}], {n, 0, 10}]; b = Table[Table[If[m <= n && m > 1, Mod[a[[n, m]] + a[[n, m + 1]], 2], 1], {m, 0, n}], {n, 0, 10}]; Flatten[b] CROSSREFS Cf. A047999, A122944. Sequence in context: A242902 A196368 A178788 * A105567 A114213 A108358 Adjacent sequences:  A131214 A131215 A131216 * A131218 A131219 A131220 KEYWORD nonn,uned,tabl AUTHOR Roger L. Bagula, Sep 27 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 26 20:30 EDT 2019. Contains 324380 sequences. (Running on oeis4.)