login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A131179 a(n) = if n mod 2 == 0 then n*(n+1)/2, otherwise (n-1)*n/2 + 1. 3
0, 1, 3, 4, 10, 11, 21, 22, 36, 37, 55, 56, 78, 79, 105, 106, 136, 137, 171, 172, 210, 211, 253, 254, 300, 301, 351, 352, 406, 407, 465, 466, 528, 529, 595, 596, 666, 667, 741, 742, 820, 821, 903, 904, 990, 991, 1081, 1082, 1176, 1177, 1275, 1276, 1378, 1379, 1485, 1486 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..10000

Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).

FORMULA

G.f.: -x*(1+2*x-x^2+2*x^3) / ( (1+x)^2*(x-1)^3 ). - R. J. Mathar, Sep 05 2012

a(n) = ( n^2+1+(n-1)*(-1)^n )/2. - Luce ETIENNE, Aug 19 2014

MATHEMATICA

LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 3, 4, 10}, 60] (* Jean-Fran├žois Alcover, Feb 12 2016 *)

PROG

(Haskell)

a131179 n = (n + 1 - m) * n' + m  where (n', m) = divMod n 2

-- Reinhard Zumkeller, Oct 12 2013

(MAGMA) [(n^2+1+(n-1)*(-1)^n )/2: n in [0..60]]; // Vincenzo Librandi, Feb 12 2016

CROSSREFS

Cf. A128918.

Sequence in context: A327300 A047341 A091910 * A079353 A242654 A243681

Adjacent sequences:  A131176 A131177 A131178 * A131180 A131181 A131182

KEYWORD

nonn,easy

AUTHOR

Philippe LALLOUET, Sep 16 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 17:18 EST 2019. Contains 329879 sequences. (Running on oeis4.)