login
A131131
4*A007318 - 3*A097806.
1
1, 1, 1, 4, 5, 1, 4, 12, 9, 1, 4, 16, 24, 13, 1, 4, 20, 40, 40, 17, 1, 4, 24, 60, 80, 60, 21, 1, 4, 28, 84, 140, 140, 84, 25, 1, 4, 32, 112, 224, 280, 224, 112, 29, 1
OFFSET
0,4
COMMENTS
Row sums = A131130, (1, 2, 10, 26, 52, 98, 190, ...), the binomial transform of (1, 1, 7, 1, 7, 1, ...). Generally, triangles generated from N*A007318 - (N-1)*A097806 have row sums that are binomial transforms of (1, 1, (N-1), 1, (N-1), 1, ...). A095121 = (1, 2, 6, 14, 30, 62, ...), the binomial transform of (1, 1, 3, 1, 3, 1, ...) and = row sums of A131108.
Triangle T(n,k), 0 <= k <= n,read by rows given by [1,3,-4,1,0,0,0,0,0,0,0,...] DELTA [1,0,0,1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 18 2007
FORMULA
4*A007318 - 3*A097806, where A007318 = Pascal's triangle and A097806 = the pairwise operator.
G.f.: (1-x*y+3*x^2+3*x^2*y)/((-1+x+x*y)*(x*y-1)). - R. J. Mathar, Aug 12 2015
EXAMPLE
First few rows of the triangle:
1;
1, 1;
4, 5, 1;
4, 12, 9, 1;
4, 16, 24, 13, 1
4, 20, 40, 40, 17, 1;
...
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Jun 16 2007
STATUS
approved