login
A131126
Expansion of (phi(q^2) / phi(-q))^2 in powers of q where phi() is a Ramanujan theta function.
8
1, 4, 16, 48, 128, 312, 704, 1504, 3072, 6036, 11488, 21264, 38400, 67864, 117632, 200352, 335872, 554952, 904784, 1457136, 2320128, 3655296, 5702208, 8813472, 13504512, 20523996, 30952544, 46340832, 68901888, 101777112, 149403264, 218016640, 316342272
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of ((phi(q) / phi(-q))^2 + 1) / 2 in powers of q where phi() is a Ramanujan theta function.
Expansion of (eta(q^4)^5 / (eta(q)^2 * eta(q^2) * eta(q^8)^2))^2 in powers of q.
Euler transform of period 8 sequence [ 4, 6, 4, -4, 4, 6, 4, 0, ...].
a(n) = 4 * A107035(n) unless n=0. 2 * a(n) = A014969(n) unless n=0.
a(n) ~ exp(sqrt(2*n)*Pi) / (16 * 2^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 10 2015
Empirical: Sum_{n>=0} a(n)/exp(2*Pi*n) = 1/2 + (1/8)*sqrt(8 + 6*sqrt(2)). - Simon Plouffe, Mar 04 2021
EXAMPLE
G.f. = 1 + 4*q + 16*q^2 + 48*q^3 + 128*q^4 + 312*q^5 + 704*q^6 + 1504*q^7 + ...
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[((1 - x^(4*k))^5 / ((1 - x^k)^2 * (1 - x^(2*k)) * (1 - x^(8*k))^2))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 10 2015 *)
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q^2] / EllipticTheta[ 4, 0, q])^2, {q, 0, n}]; (* Michael Somos, Nov 11 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^2 * eta(x^2 + A) * eta(x^8 + A)^2 / eta(x^4 + A)^5)^-2, n))};
CROSSREFS
Sequence in context: A223839 A071009 A210066 * A159964 A058922 A215723
KEYWORD
nonn
AUTHOR
Michael Somos, Jun 15 2007
STATUS
approved