OFFSET
-1,2
COMMENTS
LINKS
G. A. Edgar, Table of n, a(n) for n = -1..996
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^-1 * (chi(-q^4) / chi(-q))^8 in powers of q where chi() is a Ramanujan theta function.
Expansion of (eta(q^2) * eta(q^4) / ( eta(q) * eta(q^8) ))^8 in powers of q.
Euler transform of period 8 sequence [ 8, 0, 8, -8, 8, 0, 8, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = 16 * (1 - v*w) * (1 - v*u) - (v - u^2) * (v - w^2).
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = f(t) where q = exp(2 Pi i t).
a(n) = A007265(n) unless n=0.
a(n) ~ exp(sqrt(2*n)*Pi) / (2^(5/4) * n^(3/4)). - Vaclav Kotesovec, Oct 13 2015
EXAMPLE
T8A = 1/q + 8 + 36*q + 128*q^2 + 386*q^3 + 1024*q^4 + 2488*q^5 + 5632*q^6 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 1/q (QPochhammer[ -q, q] / QPochhammer[ -q^4, q^4])^8, {q, 0, n}]; (* Michael Somos, Apr 26 2015 *)
nmax=60; CoefficientList[Series[Product[((1-x^(2*k)) * (1-x^(4*k)) / ((1-x^k) * (1-x^(8*k))))^8, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 13 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^4 + A) / (eta(x + A) * eta(x^8 + A)))^8, n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Jun 15 2007
STATUS
approved