login
(1/4) * (A007318^3 - A007318^(-1)).
3

%I #4 Feb 21 2022 00:23:26

%S 1,2,2,7,6,3,20,28,12,4,61,100,70,20,5,182,366,300,140,30,6,547,1274,

%T 1281,700,245,42,7,1640,4376,5096,3416,1400,392,56,8,4921,14760,19692,

%U 15288,7686,2520,588,72,9

%N (1/4) * (A007318^3 - A007318^(-1)).

%C Row sums = powers of 4: (1, 4, 16, 64, ...).

%C Left border = A015518: (1, 2, 7, 20, 61, 182, ...).

%F (1/4) * (P^3 - 1/P), where P = Pascal's triangle, A007318. Delete right border of zeros.

%e First few rows of the triangle:

%e 1;

%e 2, 2;

%e 7, 6, 3;

%e 20, 28, 12, 4;

%e 61, 100, 70, 20, 5;

%e 182, 366, 300, 140, 30, 6;

%e 547, 1274, 1281, 700, 245, 42, 7;

%e ...

%Y Cf. A015518, A007318, A131047, A131048, A131050, A131051.

%K nonn,tabl

%O 1,2

%A _Gary W. Adamson_, Jun 12 2007