login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A130912 Fermat quotients, mod p: ((2^(p-1) - 1)/p) mod p = A007663(n) mod p. 2
1, 3, 2, 5, 3, 13, 3, 17, 1, 6, 1, 23, 25, 44, 36, 8, 36, 10, 2, 56, 19, 48, 6, 57, 92, 59, 13, 67, 83, 18, 17, 53, 30, 96, 56, 82, 67, 47, 3, 50, 148, 50, 104, 175, 135, 109, 189, 201, 68, 7, 26, 142, 247, 225, 128, 260, 109, 70, 74, 58, 78, 294, 175, 120, 175, 139, 153 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,2

REFERENCES

Paulo Ribenboim, "The Little Book of Bigger Primes", Springer-Verlag, 2004, p. 232.

LINKS

Table of n, a(n) for n=2..68.

FORMULA

Fermat quotients mod p = A007663: (1, 3, 9, 93, 315,...) mod p; where the Fermat quotients for base 2 = (2^(p-1) - 1). Applies to the odd primes.

EXAMPLE

a(4) = 2 = 9 mod 7 where A007663(4) = 9.

The Fermat prime(base 2) for 7 = 9 = (2^6 - 1)/7. Then 9 mod 7 = 2.

MAPLE

a := 2 : for n from 2 to 120 do p := ithprime(n) ; fq := (a^(p-1)-1)/p ; printf("%d, ", fq mod p) ; od: # [R. J. Mathar, Oct 28 2008]

MATHEMATICA

Mod[(2^(#-1)-1)/#, #]&/@Prime[Range[2, 70]] (* Harvey P. Dale, Mar 31 2013 *)

PROG

(PARI) forprime(p=3, 1e3, my(t=(2^(p-1)-1)/p); print1(t%p, ", ")); \\ Felix Fröhlich, Jul 26 2014

CROSSREFS

Cf. A007663.

Sequence in context: A131025 A070151 * A178844 A210714 A143956 A110661

Adjacent sequences:  A130909 A130910 A130911 * A130913 A130914 A130915

KEYWORD

nonn

AUTHOR

Gary W. Adamson, Jun 08 2007

EXTENSIONS

More terms from R. J. Mathar, Oct 28 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 22 22:24 EST 2014. Contains 249832 sequences.