The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A130893 Lucas numbers (beginning with 1) mod 10. 8
 1, 3, 4, 7, 1, 8, 9, 7, 6, 3, 9, 2, 1, 3, 4, 7, 1, 8, 9, 7, 6, 3, 9, 2, 1, 3, 4, 7, 1, 8, 9, 7, 6, 3, 9, 2, 1, 3, 4, 7, 1, 8, 9, 7, 6, 3, 9, 2, 1, 3, 4, 7, 1, 8, 9, 7, 6, 3, 9, 2, 1, 3, 4, 7, 1, 8, 9, 7, 6, 3, 9, 2, 1, 3, 4, 7, 1, 8, 9, 7, 6, 3, 9, 2, 1, 3, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Period 12: repeat [1, 3, 4, 7, 1, 8, 9, 7, 6, 3, 9, 2]. LINKS G. C. Greubel, Table of n, a(n) for n = 0..10000 Maarten Bullynck, L’histoire de l’informatique et l’histoire des mathématiques : rencontres, opportunités et écueils, Images des Mathématiques, CNRS, 2015 (in French). Johann Heinrich Lambert, Anlage zur Architectonic, oder Theorie des Einfachen und des Ersten in der philosophischen und mathematischen Erkenntniß, 1771. Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1). FORMULA a(n) = (a(n-2) + a(n-1)) mod 10, with a(0) = 1, a(1) = 3. a(n) = A000204(n+1) mod 10 = A000032(n+1) mod 10. - Joerg Arndt, Sep 17 2013 a(n) = f(5(n-1)+2) mod 10, where f(n) is the n-th Fibonacci number (A000045). - Joseph P. Shoulak, Sep 15 2013 From G. C. Greubel, Feb 08 2016: (Start) a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) + a(n-5) - a(n-6) + a(n-7) - a(n-8) + a(n-9) - a(n-10) + a(n-11). a(n+12) = a(n). (End) EXAMPLE 1 + 3 = 4 = 4 mod 10, then a(3) = 4. 3 + 4 = 7 = 7 mod 10, then a(4) = 7. 4 + 7 = 11 = 1 mod 10, then a(5) = 1. MATHEMATICA Nest[Append[#, Mod[Total[Take[#, -2]], 10]] &, {1, 3}, 110]  (* Harvey P. Dale, Apr 05 2011 *) t = {1, 3}; Do[AppendTo[t, Mod[t[[-1]] + t[[-2]], 10]], {99}]; t (* T. D. Noe, Sep 16 2013 *) Mod[LucasL[Range[100]], 10] (* Alonso del Arte, Sep 30 2015 *) LinearRecurrence[{1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1}, {1, 3, 4, 7,   1, 8, 9, 7, 6, 3, 9}, 100] (* G. C. Greubel, Feb 08 2016 *) PROG (Ruby) def truncM10(n) ..a = 1 ..b = 3 ..n.times do ....a, b = (b % 10), ((a + b) % 10) ..end ..return b end # Joseph P. Shoulak, Sep 15 2013 (PARI) a(n) = (fibonacci(n+1)+fibonacci(n-1)) % 10; vector(100, n, a(n)) \\ Altug Alkan, Sep 30 2015 (MAGMA) [Lucas(n) mod 10: n in [1..100]]; // Vincenzo Librandi, Oct 01 2015 CROSSREFS Cf. A000032, A003983, A111958. Sequence in context: A173014 A322017 A093087 * A072079 A116073 A166043 Adjacent sequences:  A130890 A130891 A130892 * A130894 A130895 A130896 KEYWORD easy,nonn,base AUTHOR Philippe Lallouet (philip.lallouet(AT)wanadoo.fr), Aug 22 2007 EXTENSIONS Corrected and extended by Harvey P. Dale, Apr 05 2011 New name from Joerg Arndt, Sep 17 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 20 01:55 EDT 2021. Contains 343118 sequences. (Running on oeis4.)