login
A130853
Runs of 1's of lengths 1, Fibonacci numbers F(1), F(2), F(3), ... (A000045) separated by 0's.
1
0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1
OFFSET
1,1
COMMENTS
Might be called a Fibonacci message.
EXAMPLE
Begin with 0. First Fibonacci number F(1)=1, so append 1's to 0 once - 01, append 0 - 010, F(2)=1, append 1's once and 0 - 01010, F(3)=2, we append two 1's and 0 - 01010110, ...
MAPLE
ts_Finonacci_zap:=proc(n) local i, j, tren, ans; ans := [ 0 ]: for i from 1 to n do tren := combinat[fibonacci](i): for j from 1 to tren do ans:=[ op(ans), 1 ]: od: ans:=[ op(ans), 0 ]: od; RETURN(ans) end: ts_Finonacci_zap(16);
PROG
(PARI) { n=0; i=0; while(n<22, n++; i++; write("b130853.txt", i, " ", 0); k = fibonacci(n); while(k>0, i++; k--; write("b130853.txt", i, " ", 1))); }; \\ Antti Karttunen, Dec 07 2017
CROSSREFS
Cf. A000045, A093521, A232896 (the positions of zeros).
Cf. also A003849, A005614.
Sequence in context: A191156 A144611 A288473 * A353810 A115516 A285830
KEYWORD
nonn
AUTHOR
Jani Melik, Jul 21 2007
STATUS
approved