

A130823


Each odd number appears thrice.


9



1, 1, 1, 3, 3, 3, 5, 5, 5, 7, 7, 7, 9, 9, 9, 11, 11, 11, 13, 13, 13, 15, 15, 15, 17, 17, 17, 19, 19, 19, 21, 21, 21, 23, 23, 23, 25, 25, 25, 27, 27, 27, 29, 29, 29, 31, 31, 31, 33, 33, 33, 35, 35, 35, 37, 37, 37, 39, 39, 39, 41, 41, 41, 43, 43, 43, 45, 45, 45, 47, 47, 47, 49, 49
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

Partial sums of 1,0,0,2,0,0,2,0,0,2,0,0,... .  Emeric Deutsch, Jul 23 2007


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..10000
Index entries for linear recurrences with constant coefficients, signature (1, 0, 1, 1).


FORMULA

G.f.: x*(1 + x^3)/((1  x)*(1  x^3)).  Emeric Deutsch, Jul 23 2007
From Michael Somos, Aug 16 2007: (Start)
Euler transform of length 6 sequence [1, 0, 2, 0, 0, 1].
a(n + 3) = a(n) + 2.
a(n) =  a(1n) for all n in Z. (End)
a(n) = 1 + Sum_{k=1..n} ((2/9)*((k mod 3)+4*((k+1) mod 3)2*((k+2) mod 3))).  Paolo P. Lava, Aug 29 2007, Aug 22 2009
a(n) = floor((n1)/3)*2 + 1. Michael Somos' formula suggested by Johannes W. Meijer.  Paolo P. Lava, Aug 21 2009
a(n) = floor((n1)*(n+1)/3)  floor((n2)*n/3).  Bruno Berselli, Mar 03 2017
a(n) = (6*n34*sqrt(3)*sin(2*(n2)*Pi/3))/9.  Wesley Ivan Hurt, Sep 30 2017


EXAMPLE

G.f. = x + x^2 + x^3 + 3*x^4 + 3*x^5 + 3*x^6 + 5*x^7 + 5*x^8 + 5*x^9 + 7*x^10 + ...


MAPLE

G:=x*(1+x^3)/((1x)*(1x^3)): Gser:=series(G, x=0, 82): seq(coeff(Gser, x, n), n= 1..75); # Emeric Deutsch, Jul 23 2007


MATHEMATICA

Flatten[Table[n, {n, 1, 49, 2}, {3}]] (* or *) LinearRecurrence[{1, 0, 1, 1}, {1, 1, 1, 3}, 100] (* or *) Accumulate[PadRight[{1}, 100, {2, 0, 0}]] (* Harvey P. Dale, Apr 20 2015 *)


PROG

(PARI) {a(n) = (n1)\3*2+1}; \\ Michael Somos, Aug 16 2007
(Magma) [Floor((n1)/3)*2+1: n in [1..80]]; // Vincenzo Librandi, Aug 10 2011


CROSSREFS

Sequence in context: A200266 A101290 A080605 * A101435 A077886 A096015
Adjacent sequences: A130820 A130821 A130822 * A130824 A130825 A130826


KEYWORD

nonn,easy


AUTHOR

Paul Curtz, Jul 17 2007


EXTENSIONS

More terms from Emeric Deutsch, Jul 23 2007


STATUS

approved



