login
A130811
If X_1,...,X_n is a partition of a 2n-set X into 2-blocks then a(n) is equal to the number of 5-subsets of X containing none of X_i, (i=1,...n).
3
32, 192, 672, 1792, 4032, 8064, 14784, 25344, 41184, 64064, 96096, 139776, 198016, 274176, 372096, 496128, 651168, 842688, 1076768, 1360128, 1700160, 2104960, 2583360, 3144960, 3800160, 4560192, 5437152, 6444032, 7594752, 8904192
OFFSET
5,1
COMMENTS
Number of n permutations (n>=5) of 3 objects u,v,z, with repetition allowed, containing n-5 u's. Example: if n=5 then n-5 =(0) zero u, a(1)=32. - Zerinvary Lajos, Aug 05 2008
a(n) is the number of 4-dimensional elements in an n-cross polytope where n>=5. - Patrick J. McNab, Jul 06 2015
LINKS
Eric Weisstein's World of Mathematics, Cross Polytope
FORMULA
a(n) = binomial(2*n,5) + (2*n-4)*binomial(n,2) - n*binomial(2*n-2,3).
a(n) = C(n,n-5)*2^5, for n>=5. - Zerinvary Lajos, Dec 07 2007
G.f.: 32*x^5/(1-x)^6. - Colin Barker, Apr 14 2012
MAPLE
a:=n->binomial(2*n, 5)+(2*n-4)*binomial(n, 2)-n*binomial(2*n-2, 3)
seq(binomial(n, n-5)*2^5, n=5..34); # Zerinvary Lajos, Dec 07 2007
seq(binomial(n+4, 5)*2^5, n=1..22); # Zerinvary Lajos, Aug 05 2008
MATHEMATICA
Table[Binomial[2 n, 5] + (2 n - 4) Binomial[n, 2] - n Binomial[2 n - 2, 3], {n, 5, 40}] (* Vincenzo Librandi, Jul 09 2015 *)
PROG
(Magma) [Binomial(n, n-5)*2^5: n in [5..40]]; // Vincenzo Librandi, Jul 09 2015
KEYWORD
nonn,easy
AUTHOR
Milan Janjic, Jul 16 2007
STATUS
approved