

A130705


Floors of constants in De Bruijn's approach to weighted Carleman's inequality.


0



109, 42, 26, 18, 14, 12, 10, 9, 8, 7, 6, 6, 5, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,1


COMMENTS

From Gao's abstract: "We study finite sections of weighted Carleman's inequality following the approach of De Bruijn. Similar to the unweighted case, we obtain an asymptotic expression for the optimal constant."


REFERENCES

N. G. De Bruijn, Carleman's inequality for finite series, Nederl. Akad. Wetensch. Proc. Ser. A 66 = Indag, pp. 505514.


LINKS

Table of n, a(n) for n=2..45.
Peng Gao, Finite Sections of Weighted Carleman's Inequality, arXiv:0707.0077


FORMULA

a(n) = floor(e  (2*(pi^2)*e)/((log(n))^2)).


EXAMPLE

a(2) = 109 because e  (2*(pi^2)*e)/((log(2))^2) ~ 108.9611770171388392925257212314455433803548032218666994709.
a(3) = 42 because e  (2*(pi^2)*e)/((log(3))^2) ~ 41.7382232411477828847325690963577817095329948893743754723.
a(4) = 26 because e  (2*(pi^2)*e)/((log(4))^2) ~ 25.20158288294042589661121470434688897177076548519170518650.
a(30) = 2 because e  (2*(pi^2)*e)/((log(30))^2) ~ 1.92003649778404604739381818236913112747520.
a(45) = 1 because e  (2*(pi^2)*e)/((log(45))^2) ~ 0.98456269963010489451493724472555817336322761419762175593.


CROSSREFS

Sequence in context: A077728 A093724 A247440 * A253431 A253438 A263194
Adjacent sequences: A130702 A130703 A130704 * A130706 A130707 A130708


KEYWORD

easy,sign


AUTHOR

Jonathan Vos Post, Jul 03 2007


EXTENSIONS

Replaced arxiv URL by noncached version  R. J. Mathar, Oct 30 2009


STATUS

approved



