login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A130639 Number of degree-2n permutations without even cycles and such that number of cycles of size 2k-1 is even (or zero) for every k. 2
1, 1, 1, 41, 1121, 80977, 5073377, 984765497, 131026429249, 45819745767329, 9199822716980033, 5303459200225973833, 1646226697154555000993, 1377111876294420026771441, 574027598120143165861124641, 675477754387947155701063431257, 381022545331716847279242552317057 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..220

FORMULA

E.g.f.: Product_{k>0} cosh(x^(2*k-1)/(2*k-1)).

EXAMPLE

a(2)=1 because we have (1)(2)(3)(4).

MAPLE

g:=product(cosh(x^(2*k-1)/(2*k-1)), k=1..40): gser:=series(g, x=0, 35): seq(factorial(2*n)*coeff(gser, x, 2*n), n=0..14); # Emeric Deutsch, Aug 25 2007

# second Maple program:

with(combinat):

b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(

      `if`(j=0 or irem(i, 2)=1 and irem(j, 2)=0, multinomial(n,

       n-i*j, i$j)*(i-1)!^j/j!*b(n-i*j, i-1), 0), j=0..n/i)))

    end:

a:= n-> b(2*n$2):

seq(a(n), n=0..20);  # Alois P. Heinz, Mar 09 2015

MATHEMATICA

multinomial[n_, k_] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[If[j == 0 || Mod[i, 2] == 1 && Mod[j, 2] == 0, multinomial[n, Join[{n-i*j}, Array[i&, j]]]*(i-1)!^j/j!*b[n-i*j, i-1], 0], {j, 0, n/i}]]]; a[n_] := b[2n, 2n]; Table[a[n], {n, 0, 20}] (* Jean-Fran├žois Alcover, Feb 08 2017, after Alois P. Heinz *)

CROSSREFS

Cf. A060307.

Sequence in context: A059762 A069362 A016093 * A196744 A196902 A297349

Adjacent sequences:  A130636 A130637 A130638 * A130640 A130641 A130642

KEYWORD

easy,nonn

AUTHOR

Vladeta Jovovic, Aug 11 2007

EXTENSIONS

More terms from Emeric Deutsch, Aug 25 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 13 17:34 EST 2019. Contains 329106 sequences. (Running on oeis4.)