|
|
A130626
|
|
Second differences of A130624.
|
|
2
|
|
|
3, 3, 4, 9, 21, 44, 87, 171, 340, 681, 1365, 2732, 5463, 10923, 21844, 43689, 87381, 174764, 349527, 699051, 1398100, 2796201, 5592405, 11184812, 22369623, 44739243, 89478484, 178956969, 357913941, 715827884, 1431655767, 2863311531
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
First differences of A130625: a(n) = A130625(n+1) - A130625(n).
|
|
LINKS
|
Table of n, a(n) for n=0..31.
|
|
FORMULA
|
G.f.: (3-6*x+4*x^2)/((1-2*x)*(1-x+x^2)).
a(n) = 3a(n-1) - 3a(n-2) + 2a(n-3). - Paul Curtz, Apr 24 2008
a(n) = (5/6)*(1/2-(1/2)*i*sqrt(3))^n + (5/6)*(1/2+(1/2)*i*sqrt(3))^n + (4/3)*2^n - (1/6)*i*(1/2-(1/2)*i*sqrt(3))^n*sqrt(3) + (1/6)*i*(1/2+(1/2)*i*sqrt(3))^n*sqrt(3), with n >= 0 and i=sqrt(-1). - Paolo P. Lava, Jun 12 2008
|
|
PROG
|
(MAGMA) m:=34; S:=[ [0, 1, 3][ (n-1) mod 3 +1 ]: n in [1..m] ]; T:=[ &+[ Binomial(i-1, k-1)*S[k]: k in [1..i] ]: i in [1..m] ]; U:=[ T[n+1]-T[n]: n in[1..m-1] ]; [ U[n+1]-U[n]: n in[1..m-2] ]; /* Klaus Brockhaus, Jun 21 2007 */
|
|
CROSSREFS
|
Cf. A130624, A130625.
Sequence in context: A022598 A107635 A132319 * A175796 A115284 A202869
Adjacent sequences: A130623 A130624 A130625 * A130627 A130628 A130629
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Paul Curtz, Jun 18 2007
|
|
EXTENSIONS
|
Edited and extended by Klaus Brockhaus, Jun 21 2007
|
|
STATUS
|
approved
|
|
|
|