Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #13 Feb 26 2019 05:03:37
%S 1,16,218,12240,210242,19310760,483533066,61327422240,12705993314406,
%T 398921053680600,152509144883055582,15980538294526150800,
%U 793161021967277155922,182781628843528905568920,61073803538208251485772814
%N a(n) = prime(n+1)^n - prime(n)^n where prime(n) is the n-th prime number.
%F a(n) = A093360(n+1) - A062457(n). - _R. J. Mathar_, Nov 25 2008
%e For n=2, prime(2+1)^2 - prime(2)^2 = 5^2 - 3^2 = 4^2, the second entry.
%p a := proc (n) options operator, arrow; ithprime(n+1)^n-ithprime(n)^n end proc: seq(a(n), n = 1 .. 15); # _Emeric Deutsch_, Jul 09 2007
%t n[x_]:=Module[{pn=Prime[x]},(NextPrime[pn])^x-pn^x]; n/@Range[20] (* _Harvey P. Dale_, Apr 11 2011 *)
%o (PARI) g1(n) = for(x=1,n,y=prime(x+1)^x-prime(x)^x;print1(y","))
%K nonn
%O 1,2
%A _Cino Hilliard_, Jun 17 2007
%E More terms from _Emeric Deutsch_, Jul 09 2007