login
A130606
a(n) = prime(n+1)^n - prime(n)^n where prime(n) is the n-th prime number.
0
1, 16, 218, 12240, 210242, 19310760, 483533066, 61327422240, 12705993314406, 398921053680600, 152509144883055582, 15980538294526150800, 793161021967277155922, 182781628843528905568920, 61073803538208251485772814
OFFSET
1,2
FORMULA
a(n) = A093360(n+1) - A062457(n). - R. J. Mathar, Nov 25 2008
EXAMPLE
For n=2, prime(2+1)^2 - prime(2)^2 = 5^2 - 3^2 = 4^2, the second entry.
MAPLE
a := proc (n) options operator, arrow; ithprime(n+1)^n-ithprime(n)^n end proc: seq(a(n), n = 1 .. 15); # Emeric Deutsch, Jul 09 2007
MATHEMATICA
n[x_]:=Module[{pn=Prime[x]}, (NextPrime[pn])^x-pn^x]; n/@Range[20] (* Harvey P. Dale, Apr 11 2011 *)
PROG
(PARI) g1(n) = for(x=1, n, y=prime(x+1)^x-prime(x)^x; print1(y", "))
CROSSREFS
Sequence in context: A163739 A239042 A186841 * A193380 A076073 A092657
KEYWORD
nonn
AUTHOR
Cino Hilliard, Jun 17 2007
EXTENSIONS
More terms from Emeric Deutsch, Jul 09 2007
STATUS
approved