This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A130590 Decimal expansion of the mean Euclidean distance from a point in a 3D box to the surfaces. 3

%I

%S 9,6,0,5,9,1,9,5,6,4,5,5,0,5,2,9,5,9,4,2,5,1,0,7,9,5,1,3,9,3,8,0,6,3,

%T 6,0,2,4,0,9,7,6,9,0,7,5,4,5,7,2,3,9,8,7,6,9,0,8,9,8,5,1,5,3,1,0,3,8,

%U 7,6,6,3,3,4,0,1,6,3,2,8,9,0,3,1,2,2,7,9,3,5,6,9,1,7,7,4,8,2,4,5,3,1,2,1,6

%N Decimal expansion of the mean Euclidean distance from a point in a 3D box to the surfaces.

%H D. H. Bailey and J. M. Borwein and R. E. Crandall, <a href="http://crd.lbl.gov/~dhbailey/dhbpapers/BoxIntegral.pdf">Box Integrals</a>, J. Comp. Appl. Math. vol 206, no 1 (2007) 196.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BoxIntegral.html">Box Integral</a>.

%H D. H. Bailey, J. M. Borwein, R. E. Crandall, <a href="http://dx.doi.org/10.1090/S0025-5718-10-02338-0">Advances in the theory of box integrals</a>, Math. Comp. 79 (271) (2010) 1839-1866, Table 2. [From _R. J. Mathar_, Oct 13 2010]

%F sqrt(3)/4+log[2+sqrt(3)]/2-Pi/24 = A010527/2 + A065914/ 2- A019691.

%e Equals 0.960591956455052959425107951...

%p evalf( sqrt(3)/4+log(2+sqrt(3))/2-Pi/24);

%K cons,easy,nonn

%O 0,1

%A _R. J. Mathar_, Aug 10 2007

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 22:20 EDT 2019. Contains 327252 sequences. (Running on oeis4.)